Python爬虫+数据可视化教学:分析猫咪交易数据
2022/4/21 22:14:37
本文主要是介绍Python爬虫+数据可视化教学:分析猫咪交易数据,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
猫猫这么可爱 不会有人不喜欢吧:
猫猫真的很可爱,和我女朋友一样可爱~
你们可以和女朋友一起养一只可爱猫猫
女朋友都有的吧?啊没有的话当我没说…咳咳
网上的数据太多、太杂,而且我也不知道哪个网站的数据比较好。所以,只能找到一个猫咪交易网站的数据来分析了
地址:
http://www.maomijiaoyi.com/
正式开搞!
请求数据
import requests url = f'http://www.maomijiaoyi.com/index.php?/chanpinliebiao_c_2_1--24.html' headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.131 Safari/537.36' } response = requests.get(url=url, headers=headers) print(response.text)
解析数据
# 把获取到的 html 字符串数据转换成 selector 对象 这样调用 selector = parsel.Selector(response.text) # css 选择器只要是根据标签属性内容提取数据 编程永远不看过程 只要结果 href = selector.css('.content:nth-child(1) a::attr(href)').getall() areas = selector.css('.content:nth-child(1) .area .color_333::text').getall() areas = [i.strip() for i in areas] # 列表推导式
提取标签数据
小熊猫的python第二世界Q裙:660193417
for index in zip(href, areas): # http://www.maomijiaoyi.com/index.php?/chanpinxiangqing_224383.html index_url = 'http://www.maomijiaoyi.com' + index[0] response_1 = requests.get(url=index_url, headers=headers) selector_1 = parsel.Selector(response_1.text) area = index[1] # getall 取所有 get 取一个 title = selector_1.css('.detail_text .title::text').get().strip() shop = selector_1.css('.dinming::text').get().strip() # 店名 price = selector_1.css('.info1 div:nth-child(1) span.red.size_24::text').get() # 价格 views = selector_1.css('.info1 div:nth-child(1) span:nth-child(4)::text').get() # 浏览次数 # replace() 替换 promise = selector_1.css('.info1 div:nth-child(2) span::text').get().replace('卖家承诺: ', '') # 浏览次数 num = selector_1.css('.info2 div:nth-child(1) div.red::text').get() # 在售只数 age = selector_1.css('.info2 div:nth-child(2) div.red::text').get() # 年龄 kind = selector_1.css('.info2 div:nth-child(3) div.red::text').get() # 品种 prevention = selector_1.css('.info2 div:nth-child(4) div.red::text').get() # 预防 person = selector_1.css('div.detail_text .user_info div:nth-child(1) .c333::text').get() # 联系人 phone = selector_1.css('div.detail_text .user_info div:nth-child(2) .c333::text').get() # 联系方式 postage = selector_1.css('div.detail_text .user_info div:nth-child(3) .c333::text').get().strip() # 包邮 purebred = selector_1.css( '.xinxi_neirong div:nth-child(1) .item_neirong div:nth-child(1) .c333::text').get().strip() # 是否纯种 sex = selector_1.css( '.xinxi_neirong div:nth-child(1) .item_neirong div:nth-child(4) .c333::text').get().strip() # 猫咪性别 video = selector_1.css( '.xinxi_neirong div:nth-child(2) .item_neirong div:nth-child(4) .c333::text').get().strip() # 能否视频 worming = selector_1.css( '.xinxi_neirong div:nth-child(2) .item_neirong div:nth-child(2) .c333::text').get().strip() # 是否驱虫 dit = { '地区': area, '店名': shop, '标题': title, '价格': price, '浏览次数': views, '卖家承诺': promise, '在售只数': num, '年龄': age, '品种': kind, '预防': prevention, '联系人': person, '联系方式': phone, '异地运费': postage, '是否纯种': purebred, '猫咪性别': sex, '驱虫情况': worming, '能否视频': video, '详情页': index_url, }
保存数据
import csv # 内置模块 f = open('猫咪1.csv', mode='a', encoding='utf-8', newline='') csv_writer = csv.DictWriter(f, fieldnames=['地区', '店名', '标题', '价格', '浏览次数', '卖家承诺', '在售只数', '年龄', '品种', '预防', '联系人', '联系方式', '异地运费', '是否纯种', '猫咪性别', '驱虫情况', '能否视频', '详情页']) csv_writer.writeheader() # 写入表头 csv_writer.writerow(dit) print(title, area, shop, price, views, promise, num, age, kind, prevention, person, phone, postage, purebred, sex, video, worming, index_url, sep=' | ')
得到数据
数据可视化部分
词云图
from pyecharts import options as opts from pyecharts.charts import WordCloud from pyecharts.globals import SymbolType from pyecharts.globals import ThemeType words = [(i,1) for i in cat_info['品种'].unique()] c = ( WordCloud(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)) .add("", words,shape=SymbolType.DIAMOND) .set_global_opts(title_opts=opts.TitleOpts(title="")) ) c.render_notebook()
**
交易品种占比图
from pyecharts import options as opts from pyecharts.charts import TreeMap pingzhong = cat_info['品种'].value_counts().reset_index() data = [{'value':i[1],'name':i[0]} for i in zip(list(pingzhong['index']),list(pingzhong['品种']))] c = ( TreeMap(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)) .add("", data) .set_global_opts(title_opts=opts.TitleOpts(title="")) .set_series_opts(label_opts=opts.LabelOpts(position="inside")) ) c.render_notebook()
均价占比图
from pyecharts import options as opts from pyecharts.charts import PictorialBar from pyecharts.globals import SymbolType location = list(price['品种']) values = list(price['价格']) c = ( PictorialBar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)) .add_xaxis(location) .add_yaxis( "", values, label_opts=opts.LabelOpts(is_show=False), symbol_size=18, symbol_repeat="fixed", symbol_offset=[0, 0], is_symbol_clip=True, symbol=SymbolType.ROUND_RECT, ) .reversal_axis() .set_global_opts( title_opts=opts.TitleOpts(title="均价排名"), xaxis_opts=opts.AxisOpts(is_show=False), yaxis_opts=opts.AxisOpts( axistick_opts=opts.AxisTickOpts(is_show=False), axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(opacity=0), ), ), ) .set_series_opts( label_opts=opts.LabelOpts(position='insideRight') ) ) c.render_notebook()
猫龄柱状图
from pyecharts import options as opts from pyecharts.charts import Bar from pyecharts.faker import Faker x = ['1-3个月','3-6个月','6-9个月','9-12个月','1年以上'] y = [69343,115288,18239,4139,5] c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)) .add_xaxis(x) .add_yaxis('', y) .set_global_opts(title_opts=opts.TitleOpts(title="猫龄分布")) ) c.render_notebook()
这篇关于Python爬虫+数据可视化教学:分析猫咪交易数据的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-21Python编程基础教程
- 2024-11-20Python编程基础与实践
- 2024-11-20Python编程基础与高级应用
- 2024-11-19Python 基础编程教程
- 2024-11-19Python基础入门教程
- 2024-11-17在FastAPI项目中添加一个生产级别的数据库——本地环境搭建指南
- 2024-11-16`PyMuPDF4LLM`:提取PDF数据的神器
- 2024-11-16四种数据科学Web界面框架快速对比:Rio、Reflex、Streamlit和Plotly Dash
- 2024-11-14获取参数学习:Python编程入门教程
- 2024-11-14Python编程基础入门