Functor 怎么会事呢
2022/6/11 23:52:13
本文主要是介绍Functor 怎么会事呢,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
Functor 怎么会事呢
<iframe class="quiver-embed" height="432" src="https://q.uiver.app/?q=WzAsNSxbMCwwLCJBIl0sWzIsMCwiRihBKSJdLFswLDIsImYoQSkiXSxbMiwyLCJGKGYoQSkpIH5+fHx+fiBGKGYpKEYoQSkpIl0sWzAsMV0sWzAsMiwiZiIsMCx7ImNvbG91ciI6WzAsNjAsNjBdfSxbMCw2MCw2MCwxXV0sWzEsMywiRihmKSIsMix7ImNvbG91ciI6WzI0MCw2MCw2MF19LFsyNDAsNjAsNjAsMV1dLFswLDEsIkYiLDAseyJjb2xvdXIiOlsyNDAsNjAsNjBdfSxbMjQwLDYwLDYwLDFdXSxbMiwzLCJGIiwwLHsiY29sb3VyIjpbMCw2MCw2MF19LFswLDYwLDYwLDFdXSxbNSw2LCJGIiwwLHsic2hvcnRlbiI6eyJzb3VyY2UiOjIwLCJ0YXJnZXQiOjMwfX1dXQ==&embed" style="border-radius: 8px; border: none" width="701"></iframe>Functor 2 axioms
- \(F(id_A) = id_{F(A)}\)
- \(F(f \circ g) = F(f) \circ F(g)\)
这两个公理能证明
\[F(f(A)) = F(f)(F(A)) \]吗?
还真能
变一下形式
即证:
\[(F\circ f) (A) = (F(f) \circ F) (A) \]只需
\[\begin{aligned} F \circ f =& F(f) \circ F\\ =&F(f\circ id_A)\\ =&F(f) \end{aligned} \]!注意! \(F(f(A)) = (F\circ f)(A)\) 不代表 \(F(f) = F\circ f\),函数的符号表示对不习惯的人(比如我)有误导性。
Seems to make sense
一步步推的话这样写
\[\begin{aligned} F(f(A)) &= F(f(id_A(A)))\\ &= (F(f)\circ F(id_A)) (A)\\ &= (F(f)\circ F) (A)\\ &= F(f)(F(A)) \end{aligned} \]交换图
从最上面的交换图来看,\(F\circ f = F(f) \circ F\) 似乎是显然的,因为这只是态射的结合(蓝色态射的结合与红色态射的结合)
但是证明过程还是用到了 Functor 的两个公理。这说明 Functor 在这个交换图里做了一些保证
这篇关于Functor 怎么会事呢的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-01UniApp 中组件的生命周期是多少-icode9专业技术文章分享
- 2024-11-01如何使用Svg Sprite Icon简化网页图标管理
- 2024-10-31Excel数据导出课程:新手从入门到精通的实用教程
- 2024-10-31Excel数据导入课程:新手入门指南
- 2024-10-31RBAC的权限课程:新手入门教程
- 2024-10-31Svg Sprite Icon课程:新手入门必备指南
- 2024-10-31怎么配置 L2TP 允许多用户连接-icode9专业技术文章分享
- 2024-10-31怎么在FreeBSD上 安装 OpenResty-icode9专业技术文章分享
- 2024-10-31运行 modprobe l2tp_ppp 时收到“module not found”消息提醒是什么-icode9专业技术文章分享
- 2024-10-31FreeBSD的下载命令有哪些-icode9专业技术文章分享