python将csv文件导入neo4j数据库中
2022/6/12 6:20:26
本文主要是介绍python将csv文件导入neo4j数据库中,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
其实就是按行解析csv文件,并将其中数据分为“结点”、“关系”两种类型,构建利用Node()方法构建节点;Relationship()方法构建关系
csv结构
entity1,relation1,entity2,relation2,info,relation3,keyword 人格纠纷权,包含,一般人格权纠纷,描述,一般人格权纠纷是指因侵害他人的一般人格权,使他人的人格利益受损而引起的纠纷。,关键词,人格权、纠纷、指因、人格、利益
from py2neo import Graph, Node, Relationship import pandas as pd df = pd.read_csv('crime.csv', error_bad_lines=False, encoding='utf-8') df = df.fillna('unknown') #填充缺失值 new = df['entity1'].str.strip() df['entity1'] = new new = df['entity2'].str.strip() df['entity2'] = new new = df['info'].str.strip() df['info'] = new new = df['keyword'].str.strip() df['keyword'] = new new = df['relation1'].str.strip() df['relation1'] = new new = df['relation2'].str.strip() df['relation2'] = new new = df['relation3'].str.strip() df['relation3'] = new # 连接neo4j数据库,输入地址、用户名、密码 graph = Graph("http://localhost:7474", username="neo4j", password='password') graph.delete_all() graph.begin() # 创建结点 for i in range(len(df['entity1'])): #设置node node1 = Node('entity1', name=df['entity1'][i]) graph.merge(node1, 'entity1', 'name') node2 = Node('entity2', name=df['entity2'][i]) graph.merge(node2, 'entity2', 'name') node3 = Node('info', name=df['info'][i]) graph.merge(node3, 'info', 'name') node4 = Node('keyword', name=df['keyword'][i]) graph.merge(node4, 'keyword', 'name') #设置relation rel1 = Relationship(node1, df['relation1'][i], node2) rel2 = Relationship(node2, df['relation2'][i], node3) rel3 = Relationship(node3, df['relation3'][i], node4) graph.merge(rel1) graph.merge(rel2) graph.merge(rel3) print("success")
这篇关于python将csv文件导入neo4j数据库中的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-03用FastAPI掌握Python异步IO:轻松实现高并发网络请求处理
- 2025-01-02封装学习:Python面向对象编程基础教程
- 2024-12-28Python编程基础教程
- 2024-12-27Python编程入门指南
- 2024-12-27Python编程基础
- 2024-12-27Python编程基础教程
- 2024-12-27Python编程基础指南
- 2024-12-24Python编程入门指南
- 2024-12-24Python编程基础入门
- 2024-12-24Python编程基础:变量与数据类型