pydantic导出模型
2022/6/16 23:21:17
本文主要是介绍pydantic导出模型,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
1.model.dict(...)
- 将模型转换为字典的主要方法。子模型将递归转换为字典。
- 参数如下:
include
:要包含在返回的字典中的字段exclude
:要从返回的字典中排除的字段by_alias
:字段别名是否应用作返回字典中的键exclude_unset
:创建模型时未显式设置的字段是否应从返回的字典中排除;exclude_defaults
:是否应从返回的字典中排除等于其默认值(无论是否设置)的字段;exclude_none
:是否应从返回的字典中排除等于的字段;
from pydantic import BaseModel class BarModel(BaseModel): whatever: int class FooBarModel(BaseModel): banana: float foo: str bar: BarModel m = FooBarModel(banana=3.14, foo='hello', bar={'whatever': 123}) # returns a dictionary: print(m.dict()) """ { 'banana': 3.14, 'foo': 'hello', 'bar': {'whatever': 123}, } """ print(m.dict(include={'foo', 'bar'})) # {'foo': 'hello', 'bar': {'whatever': 123}} print(m.dict(exclude={'foo', 'bar'})) # {'banana': 3.14}
- 高级包含和排除
from pydantic import BaseModel, SecretStr class User(BaseModel): id: int username: str password: SecretStr class Transaction(BaseModel): id: str user: User value: int t = Transaction( id='1234567890', user=User( id=42, username='JohnDoe', password='hashedpassword' ), value=9876543210, ) # using a set: print(t.dict(exclude={'user', 'value'})) # {'id': '1234567890'} # using a dict: 对深层嵌套对象进行处理 print(t.dict(exclude={'user': {'username', 'password'}, 'value': True})) # {'id': '1234567890', 'user': {'id': 42}} print(t.dict(include={'id': True, 'user': {'id'}})) # {'id': '1234567890', 'user': {'id': 42}}
import datetime from typing import List from pydantic import BaseModel, SecretStr class Country(BaseModel): name: str phone_code: int class Address(BaseModel): post_code: int country: Country class CardDetails(BaseModel): number: SecretStr expires: datetime.date class Hobby(BaseModel): name: str info: str class User(BaseModel): first_name: str second_name: str address: Address card_details: CardDetails hobbies: List[Hobby] user = User( first_name='John', second_name='Doe', address=Address( post_code=123456, country=Country( name='USA', phone_code=1 ) ), card_details=CardDetails( number=4212934504460000, expires=datetime.date(2020, 5, 1) ), hobbies=[ Hobby(name='Programming', info='Writing code and stuff'), Hobby(name='Gaming', info='Hell Yeah!!!'), ], ) exclude_keys = { 'second_name': True, 'address': {'post_code': True, 'country': {'phone_code'}}, 'card_details': True, # You can exclude fields from specific members of a tuple/list by index: 'hobbies': {-1: {'info'}}, } include_keys = { 'first_name': True, 'address': {'country': {'name'}}, 'hobbies': {0: True, -1: {'name'}}, } # would be the same as user.dict(exclude=exclude_keys) in this case: print(user.dict(include=include_keys)) """ { 'first_name': 'John', 'address': {'country': {'name': 'USA'}}, 'hobbies': [ { 'name': 'Programming', 'info': 'Writing code and stuff', }, {'name': 'Gaming'}, ], } """ # 从列表对象中排除所有子元素的info属性 print(user.dict(exclude={'hobbies': {'__all__': {'info'}}})) """ { 'first_name': 'John', 'second_name': 'Doe', 'address': { 'post_code': 123456, 'country': {'name': 'USA', 'phone_code': 1}, }, 'card_details': { 'number': SecretStr('**********'), 'expires': datetime.date(2020, 5, 1), }, 'hobbies': [{'name': 'Programming'}, {'name': 'Gaming'}], } """
2.model.json(...)
-
法会将模型序列化为 JSON
-
encoder
:支持使用自定义的编码器函数 -
json_encoders
的使用(模型继承期间,它们也会合并,子编码器优先于父编码器)
from datetime import datetime, timedelta from pydantic import BaseModel from pydantic.json import timedelta_isoformat class WithCustomEncoders(BaseModel): dt: datetime diff: timedelta class Config: json_encoders = { # 参数类型:处理方法 datetime: lambda v: v.timestamp(), timedelta: timedelta_isoformat, } m = WithCustomEncoders(dt=datetime(2032, 6, 1), diff=timedelta(hours=100)) print(m.json()) # {"dt": 1969660800.0, "diff": "P4DT4H0M0.000000S"}
models_as_dict=False
:模型作为字典序列化对象,是否进行序列化
from typing import List, Optional from pydantic import BaseModel class Address(BaseModel): city: str country: str class User(BaseModel): name: str address: Address friends: Optional[List['User']] = None class Config: json_encoders = { # 将Address和User作为序列化对象 Address: lambda a: f'{a.city} ({a.country})', 'User': lambda u: f'{u.name} in {u.address.city} ' f'({u.address.country[:2].upper()})', # "address": lambda a: f'{a.city} ({a.country})', # 'friends': lambda u: f'{u.name} in {u.address.city} ' # f'({u.address.country[:2].upper()})', } wolfgang = User( name='Wolfgang', address=Address(city='Berlin', country='Deutschland'), friends=[ User(name='Pierre', address=Address(city='Paris', country='France')), User(name='John', address=Address(city='London', country='UK')), ], ) # 对其进行序列化 print(wolfgang.json(models_as_dict=False)) """ {"name": "Wolfgang", "address": "Berlin (Deutschland)", "friends": ["Pierre in Paris (FR)", "John in London (UK)"]} """ # 不对其进行序列化 print(wolfgang.json()) """ {"name": "Wolfgang", "address": {"city": "Berlin", "country": "Deutschland"}, "friends": [{"name": "Pierre", "address": {"city": "Paris", "country": "France"}, "friends": null}, {"name": "John", "address": {"city": "London", "country": "UK"}, "friends": null}]} """
这篇关于pydantic导出模型的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-01使用 SVN合并操作时,怎么解决冲突的情况?-icode9专业技术文章分享
- 2025-01-01告别Anaconda?试试这些替代品吧
- 2024-12-31自学记录鸿蒙API 13:实现人脸比对Core Vision Face Comparator
- 2024-12-31自学记录鸿蒙 API 13:骨骼点检测应用Core Vision Skeleton Detection
- 2024-12-31自学记录鸿蒙 API 13:实现人脸检测 Core Vision Face Detector
- 2024-12-31在C++中的双端队列是什么意思,跟消息队列有关系吗?-icode9专业技术文章分享
- 2024-12-31内存泄漏(Memory Leak)是什么,有哪些原因和优化办法?-icode9专业技术文章分享
- 2024-12-31计算机中的内存分配方式堆和栈有什么关系和特点?-icode9专业技术文章分享
- 2024-12-31QT布局器的具体使用原理和作用是什么?-icode9专业技术文章分享
- 2024-12-30用PydanticAI和Gemini 2.0构建Airflow的AI助手