大数据生态圈组件
2022/7/3 23:21:48
本文主要是介绍大数据生态圈组件,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
目录- Hadoop
- Zookeeper
- Hive
- Flume
- Kafka
- HBase
- Sqoop
- Azkaban
- Oozie
- Maxwell
- Canal
- Spark
- Flink
- HUE
- CDH
- Kettle
- 大数据学习路线
Hadoop
由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。它实现了一个分布式文件系统( Distributed File System),其中一个组件是HDFS(Hadoop Distributed File System)。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求,可以以流的形式访问(streaming access)文件系统中的数据。Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,而MapReduce则为海量的数据提供了计算。
Zookeeper
一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。
Hive
基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。hive数据仓库工具能将结构化的数据文件映射为一张数据库表
,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行。Hive的优点是学习成本低,可以通过类似SQL语句实现快速MapReduce统计,使MapReduce变得更加简单,而不必开发专门的MapReduce应用程序。hive十分适合对数据仓库进行统计分析。
Flume
Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。
Kafka
由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站中的所有动作流数据。 这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因素。 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。 对于像Hadoop一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。Kafka的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群来提供实时的消息。
HBase
一个分布式的、面向列
的开源数据库,该技术来源于 Fay Chang 所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力。HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。
Sqoop
主要用于在Hadoop(Hive)与传统的数据库(mysql、postgresql...)间进行数据的传递,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。Sqoop项目开始于2009年,最早是作为Hadoop的一个第三方模块存在,后来为了让使用者能够快速部署,也为了让开发人员能够更快速的迭代开发,Sqoop独立成为一个Apache项目。
Azkaban
一个轻量级的批量工作流任务调度器,主要用于在一个工作流内以一个特定的顺序运行一组工作和流程,它的配置是通过简单的key:value对的方式,通过配置中的dependencies 来设置依赖关系。Azkaban使用job配置文件建立任务之间的依赖关系,并提供一个易于使用的web用户界面维护和跟踪你的工作流。
Oozie
一个基于工作流引擎的开源框架,由Cloudera公司贡献给Apache,它能够提供对Hadoop MapReduce和Pig Jobs的任务调度与协调。Oozie需要部署到Java Servlet容器中运行。
所谓工作流,即是指数据import进HDFS,然后用hive分析,然后将分析结果集export,把不同的结果集合并成最终结果,将不同的业务进行编排。Oozie的工作流任务是DAG(有向无环图)。
所谓调度,即是指对作业或任务的定时执行,或者是事件的触发执行。触发执行的时机:在指定时间触发执行,或者当某目录下有数据集时触发执行。
Oozie集成了Hadoop的很多框架,如Java MapReduce、Streaming MapReduce、Pig、Hive、Sqoop、Distcp。一个Oozie Job也是一个MapReduce程序,仅仅只有map任务的程序,是分布式可扩展的。针对不同类型的任务编写的workflow,可以写成模板来直接套用。
Oozie同JBoss jBPM提供的jPDL一样,也提供了类似的流程定义语言hPDL,通过XML文件格式来实现流程的定义。对于工作流系统,一般都会有很多不同功能的节点,比如分支、并发、汇合等等。Oozie定义了控制流节点(Control Flow Nodes)和动作节点(Action Nodes),其中控制流节点定义了流程的开始和结束,以及控制流程的执行路径(Execution Path),如decision、fork、join等;而动作节点包括Hadoop map-reduce、Hadoop文件系统、Pig、SSH、HTTP、eMail和Oozie子流程。
Maxwell
Maxwell 是由美国 Zendesk 开源,用 Java 编写的 MySQL 实时抓取软件。 实时读取MySQL 二进制日志 Binlog,并生成 JSON格式的消息,作为生产者发送给 Kafka,Kinesis、RabbitMQ、Redis、Google Cloud Pub/Sub、文件或其它平台的应用程序。
Canal
阿里开源的mysql数据同步组件
Spark
Spark 于 2009 年诞生于加州大学伯克利分校 AMPLab,2013 年被捐赠给 Apache 软件基金会,2014 年 2 月成为 Apache 的顶级项目。相对于 MapReduce 的批处理计算,Spark 可以带来上百倍的性能提升,因此它成为继 MapReduce 之后,最为广泛使用的分布式计算框架。
Flink
一个框架和分布式处理引擎,用于在无边界和有边界数据流上进行有状态的计算。Flink 能在所有常见集群环境中运行,并能以内存速度和任意规模进行计算。Apache Flink 功能强大,支持开发和运行多种不同种类的应用程序。它的主要特性包括:批流一体化、精密的状态管理、事件时间支持以及精确一次的状态一致性保障等。Flink 不仅可以运行在包括 YARN、 Mesos、Kubernetes 在内的多种资源管理框架上,还支持在裸机集群上独立部署。在启用高可用选项的情况下,它不存在单点失效问题。事实证明,Flink 已经可以扩展到数千核心,其状态可以达到 TB 级别,且仍能保持高吞吐、低延迟的特性。世界各地有很多要求严苛的流处理应用都运行在 Flink 之上。
HUE
Hue 是一个Web应用,用来简化用户和Hadoop集群的交互。Hue技术架构,如下图所示,从总体上来讲,Hue应用采用的是B/S架构,该web应用的后台采用python编程语言别写的。大体上可以分为三层,分别是前端view层、Web服务层和Backend服务层。Web服务层和Backend服务层之间使用RPC的方式调用。
CDH
CDH是Hadoop众多分支中的一种,由Cloudera维护,基于稳定版本的Apache Hadoop构建,全称Cloudera’s Distribution, including Apache Hadoop。CDH提供了Hadoop的核心可扩展存储(HDFS)和分布式计算(MR),还提供了WEB页面进行管理、监控。
Kettle
一款国外开源的ETL工具,纯java编写,可以在Window、Linux、Unix上运行,数据抽取高效稳定。Kettle 中文名称叫水壶,该项目的主程序员MATT 希望把各种数据放到一个壶里,然后以一种指定的格式流出。Kettle这个ETL工具集,它允许你管理来自不同数据库的数据,通过提供一个图形化的用户环境来描述你想做什么,而不是你想怎么做。Kettle中有两种脚本文件,transformation和job,transformation完成针对数据的基础转换,job则完成整个工作流的控制。
大数据学习路线
这篇关于大数据生态圈组件的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-14使用AWS Lambda和S3打造智能文件整理器 - (动手搭建系列)
- 2024-11-14Netflix简化营收基础设施中的合同管理工具
- 2024-11-142024年必备的6款开源Terraform神器
- 2024-11-14Spin 3.0来啦:全新功能让你的无服务器Wasm应用开发更上一层楼
- 2024-11-14如何高效管理项目?小团队到大企业的多功能项目管理工具推荐
- 2024-11-1333 张高清大图,带你玩转 KubeSphere 4.1.2 部署与扩展组件安装
- 2024-11-11Spark 新作《循序渐进 Spark 大数据应用开发》简介
- 2024-11-11KubeSphere 社区双周报| 2024.10.25-11.07
- 2024-11-11云原生周刊:Istio 1.24.0 正式发布
- 2024-11-10一个故事,为你理清云开发服务的选择思路