python并发编程实战(九):使用多进程multiprocessing模块加速程序的运行

2022/7/5 5:20:09

本文主要是介绍python并发编程实战(九):使用多进程multiprocessing模块加速程序的运行,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

有了多线程threading,为什么还要用多进程multiprocessing

多进程multiprocessing知识梳理(对比多线程threading)

代码实战:单线程、多线程、多进程对比CPU密集计算速度

tmp/06.thread_process_cpu_bound.py

import math
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
import time


PRIMES = [112272535095293] * 100



def is_prime(n):
    if n < 2:
        return False
    if n == 2:
        return True
    if n % 2 == 0:
        return False
    sqrt_n = int(math.floor(math.sqrt(n)))
    for i in range(3, sqrt_n + 1, 2):
        if n % i == 0:
            return False
    return True


def single_thread():
    for number in PRIMES:
        is_prime(number)


def multi_thread():
    with ThreadPoolExecutor() as pool:
        pool.map(is_prime, PRIMES)


def multi_process():
    with ProcessPoolExecutor() as pool:
        pool.map(is_prime, PRIMES)


if __name__ == '__main__':
    start = time.time()
    single_thread()
    end = time.time()
    print("single_thread, cost: ", end - start, "seconds")

    start = time.time()
    multi_thread()
    end = time.time()
    print("multi_thread, cost: ", end - start, "seconds")

    start = time.time()
    multi_process()
    end = time.time()
    print("multi_process, cost: ", end - start, "seconds")

运行结果:



这篇关于python并发编程实战(九):使用多进程multiprocessing模块加速程序的运行的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程