python的迭代器&生成器

2022/7/24 1:22:45

本文主要是介绍python的迭代器&生成器,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

1.列表生成式,迭代器&生成器

列表生成式

孩子,我现在有个需求,看列表[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],我要求你把列表里的每个值加1,你怎么实现?你可能会想到2种方式 

>>> a
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> b = []
>>> for i in a:b.append(i+1)
...
>>> b
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a = b
>>> a
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

普通青年版


复制代码
>>> a
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> b = []
>>> for i in a:b.append(i+1)
... 
>>> b
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a = b
>>> a
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
复制代码 复制代码
a = [1,3,4,6,7,7,8,9,11]

for index,i in enumerate(a):
    a[index] +=1
print(a)

原值修改
复制代码

>>> a
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a = map(lambda x:x+1, a)
>>> a
<map object at 0x101d2c630>
>>> for i in a:print(i)
...
2
3
4
5
6
7
8
9
10
11

文艺青年版


复制代码
>>> a
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a = map(lambda x:x+1, a)
>>> a
<map object at 0x101d2c630>
>>> for i in a:print(i)
... 
2
3
4
5
6
7
8
9
10
11
复制代码

其实还有一种写法,如下 

>>> a = [i+1 for i in range(10)]
>>> a
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a = [i+1 for i in range(10)]
>>> a
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

这就叫做列表生成

 

生成器

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

1 2 3 4 5 6 >>> L = [x * for in range(10)] >>> L [0149162536496481] >>> g = (x * for in range(10)) >>> g <generator object <genexpr> at 0x1022ef630>

创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。

我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 >>> next(g) 0 >>> next(g) 1 >>> next(g) 4 >>> next(g) 9 >>> next(g) 16 >>> next(g) 25 >>> next(g) 36 >>> next(g) 49 >>> next(g) 64 >>> next(g) 81 >>> next(g) Traceback (most recent call last):   File "<stdin>", line 1in <module> StopIteration

我们讲过,generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 >>> g = (x * for in range(10)) >>> for in g: ...     print(n) ... 0 1 4 9 16 25 36 49 64 81

 

所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

1 2 3 4 5 6 7 def fib(max):     n, a, b = 001     while n < max:         print(b)         a, b = b, a + b         = + 1     return 'done'

注意,赋值语句:

1 a, b = b, a + b

相当于:

1 2 3 = (b, a + b) # t是一个tuple = t[0] = t[1]

但不必显式写出临时变量t就可以赋值。

上面的函数可以输出斐波那契数列的前N个数:

1 2 3 4 5 6 7 8 9 10 11 12 >>> fib(10) 1 1 2 3 5 8 13 21 34 55 done

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

复制代码
def fib(max):
    n,a,b = 0,0,1

    while n < max:
        #print(b)
        yield  b
        a,b = b,a+b

        n += 1

    return 'done' 
复制代码

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

>>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>

这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

复制代码
data = fib(10)
print(data)

print(data.__next__())
print(data.__next__())
print("干点别的事")
print(data.__next__())
print(data.__next__())
print(data.__next__())
print(data.__next__())
print(data.__next__())

#输出
<generator object fib at 0x101be02b0>
1
1
干点别的事
2
3
5
8
13
复制代码

在上面fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

 

复制代码
>>> for n in fib(6):
...     print(n)
...
1
1
2
3
5
8
复制代码

但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIterationvalue中:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 >>> g = fib(6) >>> while True: ...     try: ...         x = next(g) ...         print('g:', x) ...     except StopIteration as e: ...         print('Generator return value:', e.value) ...         break ... g: 1 g: 1 g: 2 g: 3 g: 5 g: 8 Generator return value: done

关于如何捕获错误,后面的错误处理还会详细讲解。

还可通过yield实现在单线程的情况下实现并发运算的效果  

#_*_coding:utf-8_*_
__author__ = 'Alex Li'

import time
def consumer(name):
print("%s 准备吃包子啦!" %name)
while True:
baozi = yield

print("包子[%s]来了,被[%s]吃了!" %(baozi,name))


def producer(name):
c = consumer('A')
c2 = consumer('B')
c.__next__()
c2.__next__()
print("老子开始准备做包子啦!")
for i in range(10):
time.sleep(1)
print("做了2个包子!")
c.send(i)
c2.send(i)

producer("alex")

通过生成器实现协程并行运算

迭代器

我们已经知道,可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如listtupledictsetstr等;

一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable

可以使用isinstance()判断一个对象是否是Iterable对象:

 

1 2 3 4 5 6 7 8 9 10 11 >>> from collections import Iterable >>> isinstance([], Iterable) True >>> isinstance({}, Iterable) True >>> isinstance('abc', Iterable) True >>> isinstance((x for in range(10)), Iterable) True >>> isinstance(100, Iterable) False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

*可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator

可以使用isinstance()判断一个对象是否是Iterator对象:

1 2 3 4 5 6 7 8 9 >>> from collections import Iterator >>> isinstance((x for in range(10)), Iterator) True >>> isinstance([], Iterator) False >>> isinstance({}, Iterator) False >>> isinstance('abc', Iterator) False

生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator

listdictstrIterable变成Iterator可以使用iter()函数:

1 2 3 4 >>> isinstance(iter([]), Iterator) True >>> isinstance(iter('abc'), Iterator) True

你可能会问,为什么listdictstr等数据类型不是Iterator

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

 

小结

凡是可作用于for循环的对象都是Iterable类型;

凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python的for循环本质上就是通过不断调用next()函数实现的,例如:

1 2 for in [12345]:     pass

实际上完全等价于:

复制代码
# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
    try:
        # 获得下一个值:
        x = next(it)
    except StopIteration:
        # 遇到StopIteration就退出循环
        break
复制代码  

这篇关于python的迭代器&生成器的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程