Python异步编程之Asyncio
2022/7/27 1:23:49
本文主要是介绍Python异步编程之Asyncio,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
1. 协程简介
1.1 协程的含义及实现方法
协程(Coroutine),也可以被称为微线程,是一种用户态内的上下文切换技术。简而言之,其实就是通过一个线程实现代码块相互切换执行。例如:
def func1(): print(1) ... # 协程介入 print(2) def func2(): print(3) ... # 协程介入 print(4) func1() func2()
上述代码是普通的函数定义和执行,按流程分别执行两个函数中的代码,并先后会输出:1、2、3、4
。但如果介入协程技术那么就可以实现函数见代码切换执行,最终输入:1、3、2、4
。
在Python中有多种方式可以实现协程,例如:
-
greenlet,是一个第三方模块,用于实现协程代码(Gevent协程就是基于greenlet实现);
-
yield,生成器,借助生成器的特点也可以实现协程代码;
-
asyncio,在Python3.4中引入的模块用于编写协程代码;
-
async & awiat,在Python3.5中引入的两个关键字,结合asyncio模块可以更方便的编写协程代码。
前两种实现方式较为老旧,所以重点关注后面的方式
标准库实现方法
asyncio是Python 3.4版本引入的标准库,直接内置了对异步IO的支持。
import asyncio @asyncio.coroutine def func1(): print(1) yield from asyncio.sleep(2) # 遇到IO耗时操作,自动化切换到tasks中的其他任务 print(2) @asyncio.coroutine def func2(): print(3) yield from asyncio.sleep(2) # 遇到IO耗时操作,自动化切换到tasks中的其他任务 print(4) tasks = [ asyncio.ensure_future( func1() ), asyncio.ensure_future( func2() ) ] loop = asyncio.get_event_loop() loop.run_until_complete(asyncio.wait(tasks))
关键字实现方法
async & await
关键字在Python3.5版本中正式引入,代替了asyncio.coroutine
装饰器,基于他编写的协程代码其实就是上一示例的加强版,让代码可以更加简便可读。
import asyncio async def func1(): print(1) await asyncio.sleep(2) # 耗时操作 print(2) async def func2(): print(3) await asyncio.sleep(2) # 耗时操作 print(4) tasks = [ asyncio.ensure_future(func1()), asyncio.ensure_future(func2()) ] loop = asyncio.get_event_loop() loop.run_until_complete(asyncio.wait(tasks))
1.2 案例演示
例如:用代码实现下载 url_list
中的图片。
- 方式一:同步编程实现
# requests库仅支持同步的http网络请求 import requests def download_image(url): print("开始下载:",url) # 发送网络请求,下载图片 response = requests.get(url) # 图片保存到本地文件 file_name = url.rsplit('_')[-1] with open(file_name, mode='wb') as file_object: file_object.write(response.content) print("下载完成") if __name__ == '__main__': url_list = [ 'https://www.1.jpg', 'https://www.2.jpg', 'https://www.3.jpg' ] for item in url_list: download_image(item)
输出:按顺序发送请求,请求一次下载一张图片,假如每次下载花费1s,完成任务需要3s 以上。
- 方式二:基于协程的程实现
# aiohttp 为支持异步编程的http请求库 import aiohttp import asyncio async def fetch(session, url): print("发送请求:", url) async with session.get(url, verify_ssl=False) as response: content = await response.content.read() file_name = url.rsplit('_')[-1] with open(file_name, mode='wb') as file_object: file_object.write(content) async def main(): async with aiohttp.ClientSession() as session: url_list = [ 'https://www.1.jpg', 'https://www.2.jpg', 'https://www.3.jpg' ] tasks = [asyncio.create_task(fetch(session, url)) for url in url_list] await asyncio.wait(tasks) if __name__ == '__main__': asyncio.run(main())
输出:一次发送三个下载请求,同时下载,假如每次下载花费1s,完成任务仅需要1s 左右,第一种方法的耗时为第二种的三倍。
1.3 小结
协程可以让原来要使用异步+回调方式写的非人类代码,用看似同步的方式写出来。
2. 异步编程简介
2.1 同步和异步的区别
同步 :循序渐进执行操作、请求 异步:无需等待上一步操作、请求完成,就开始下一步(每个操作仍然有先后顺序)
目前python异步相关的主流技术是通过包含关键字async&await的async模块实现。
2.2 异步编程-事件循环
事件循环,可以把他当做是一个while循环,这个while循环在周期性的运行并执行一些任务,在特定条件下终止循环。
# 伪代码 任务列表 = [ 任务1, 任务2, 任务3,... ] while True: 可执行的任务列表,已完成的任务列表 = 去任务列表中检查所有的任务,将'可执行'和'已完成'的任务返回 for 就绪任务 in 已准备就绪的任务列表: 执行已就绪的任务 for 已完成的任务 in 已完成的任务列表: 在任务列表中移除 已完成的任 如果 任务列表 中的任务都已完成,则终止循环
在编写程序时候可以通过如下代码来获取和创建事件循环。
# 方式一: import asyncio # 生成或获取一个事件循环 loop = asyncio.get_event_loop() # 将任务添加到事件循环中 loop.run_until_complete(任务) # 方式二(python3.7及以上版本支持): asyncio.run( 任务 )
2.3 异步编程-快速上手
async 关键字
- 协程函数:定义函数时候由async关键字装饰的函数
async def 函数名
- 协程对象:执行协程函数得到的协程对象。
# 协程函数 async def func(): pass # 协程对象 result = func()
注意:执行协程函数只会创建协程对象,函数内部代码不会执行。如果想要运行协程函数内部代码,必须要将协程对象交给事件循环来处理。
import asyncio async def func(): print("执行协程函数内部代码!") result = func() # 调用方法1: # loop = asyncio.get_event_loop() # loop.run_until_complete( result ) # 调用方法2: asyncio.run( result )
await 关键字
await + 可等待的对象(协程对象、Future、Task对象 -> IO等待),遇到IO操作挂起当前协程(任务),等IO操作完成之后再继续往下执行。当前协程挂起时,事件循环可以去执行其他协程(任务)。
import asyncio async def others(): print("start") await asyncio.sleep(2) print('end') return '返回值' async def func(): print("执行协程函数内部代码") # await等待对象的值得到结果之后再继续向下走 response = await others() print("IO请求结束,结果为:", response) asyncio.run( func() )
Task 对象
Task对象的作用是在事件循环中添加多个任务,用于并发调度协程,通过asyncio.create_task(协程对象)
的方式创建Task对象,这样可以让协程加入事件循环中等待被调度执行。
async def module_a(): print("start module_a") await asyncio.sleep(2) # 模拟 module_a 的io操作 print('end module_a') return 'module_a 完成' async def module_b(): print("start module_b") await asyncio.sleep(1) # 模拟 module_a 的io操作 print('end module_b') return 'module_b 完成' task_list = [ module_a(), module_b(), ] done,pending = asyncio.run( asyncio.wait(task_list) ) print(done)
2.4 案例演示
例如:用代码实现连接并查询数据库的同时,下载一个APK文件到本地。
import asyncio import aiomysql import os import aiofiles as aiofiles from aiohttp import ClientSession async def get_app(): url = "http://www.123.apk" async with ClientSession() as session: # 网络IO请求,获取响应 async with session.get(url)as res: if res.status == 200: print("下载成功", res) # 磁盘IO请求,读取响应数据 apk = await res.content.read() async with aiofiles.open("demo2.apk", "wb") as f: # 磁盘IO请求,数据写入本地磁盘 await f.write(apk) else: print("下载失败") async def excute_sql(sql): # 网络IO操作:连接MySQL conn = await aiomysql.connect(host='127.0.0.1', port=3306, user='root', password='123', db='mysql', ) # 网络IO操作:创建CURSOR cur = await conn.cursor() # 网络IO操作:执行SQL await cur.execute(sql) # 网络IO操作:获取SQL结果 result = await cur.fetchall() print(result) # 网络IO操作:关闭链接 await cur.close() conn.close() task_list = [get_app(), execute_sql(sql="SELECT Host,User FROM user")] asyncio.run(asyncio.wait(task_list))
代码逻辑分析:
【step1】asyncio.run()
创建了事件循环。wait()
方法将task任务列表加入到当前的事件循环中;(注意:必须先创建事件循环,后加入任务列表,否则会报错)
【step2】事件循环监听事件状态,开始执行代码,先执行列表中的get_app()
方法,当代码执行到async with session.get(url)as res:
时,遇到await关键字表示有IO耗时操作,线程会将该任务挂起在后台执行,并切换到另外一个异步函数excute_sql()
;
【step3】当代码执行到excute_sql()
的第一个IO耗时操作后,线程会重复先前的操作,将该任务挂起,去执行其他可执行代码。假如此时事件循环监听到get_app()
中的第一IO耗时操作已经执行完成,那么线程会切换到该方法第一个IO操作后的代码,并按顺序执行直到遇上下一个await装饰的IO操作;假如事件循环监听到excute_sql()
中的第一个IO操作先于get_app()
的第一个IO操作完成,那么线程会继续执行excute_sql
的后续代码;
【step4】线程会重复进行上述第3点中的步骤,直到代码全部执行完成,事件循环也会随之停止。
2.5 小结
一般来说CPU的耗时运算方式有:
计算密集型的操作:计算密集型任务的特点是要进行大量的计算、逻辑判断,消耗CPU资源,比如计算圆周率、对视频进行高清解码等等。
IO密集型的操作:涉及到网络、磁盘IO的任务都是IO密集型任务,这类任务的特点是CPU消耗很少,任务的大部分时间都在等待IO操作完成(因为IO的速度远远低于CPU和内存的速度)。
异步编程基于协程实现,如果利用协程实现计算密集型操作,因为线程在上下文之间的来回切换总会经历类似于”计算“-->”保存“-->”创建新环境“ 的一系列操作,导致系统的整体性能反而会下降。所以异步编程并不适用于计算密集型的程序。然而在IO密集型操作汇总,协程在IO等待时间就去切换执行其他任务,当IO操作结束后再自动回调,那么就会大大节省资源并提供性能。
这篇关于Python异步编程之Asyncio的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-24Python编程入门指南
- 2024-12-24Python编程基础入门
- 2024-12-24Python编程基础:变量与数据类型
- 2024-12-23使用python部署一个usdt合约,部署自己的usdt稳定币
- 2024-12-20Python编程入门指南
- 2024-12-20Python编程基础与进阶
- 2024-12-19Python基础编程教程
- 2024-12-19python 文件的后缀名是什么 怎么运行一个python文件?-icode9专业技术文章分享
- 2024-12-19使用python 把docx转为pdf文件有哪些方法?-icode9专业技术文章分享
- 2024-12-19python怎么更换换pip的源镜像?-icode9专业技术文章分享