基于TextCNN的文本情感分类

2022/9/7 6:23:11

本文主要是介绍基于TextCNN的文本情感分类,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

TextCNN

在文本处理中使用卷积神经网络:将文本序列当作一维图像

一维卷积 -> 基于互相关运算的二维卷积的特例:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8jxoMAyc-1662482583202)(../img/TextCNN-1%E7%BB%B4%E5%8D%B7%E7%A7%AF.png)]

多通道的一维卷积:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-epBJcQ9Q-1662482583204)(../img/TextCNN-%E5%A4%9A%E9%80%9A%E9%81%931%E7%BB%B4%E5%8D%B7%E7%A7%AF.png)]

最大汇聚层:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1CZABq3B-1662482583205)(../img/TextCNN-MaxPool.png)]


textCNN模型结构

textCNN模型设计如下所示:

  1. 定义多个一维卷积核,并分别对输入执行卷积运算。具有不同宽度的卷积核可以捕获不同数目相邻词元之间的局部特征
  2. 在所有输出通道上执行最大时间汇聚层(MaxPool),然后将所有标量汇聚输出连结为向量
  3. 使用全连接层将连结后的向量转换为输出类别。可以用torch.nn.Dropout(0.5)来减少过拟合。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9FE4cNKS-1662482583206)(../img/TextCNN%E6%95%B4%E4%BD%93%E7%BB%93%E6%9E%84.png)]

图15.3.5通过一个具体的例子说明了textCNN的模型架构。输入是具有11个词元的句子,其中每个词元由6维向量表示(即单词的嵌入向量长度为6)。定义两个大小为(6,4)和(6,4)的一维卷积核(长必须为嵌入向量长度),这两个卷积核通道数分别为4和5,它们分别4个产生宽度为11-2+1=10的输出通道和5个宽度为11-4+1=8的输出通道。尽管这4+5=9个通道的宽度不同,但最大时间汇聚层在所有输出通道上执行MaxPool,给出了一个宽度的4+5=9的一维向量,该向量最终通过全连接层被转换为用于二元情感预测的2维输出向量


  1. 和图片不同,由于词元具有不可分割性,所以卷积核的长度必须是嵌入向量长度
  2. 在文本处理中,卷积核的长度是嵌入向量维度(特征维度),而卷积核的宽度就是N-gram的窗口大小,代表了词元和上下文词之间的词距
"""
Task: 基于TextCNN的文本情感分类
Author: ChengJunkai @github.com/Cheng0829
Date: 2022/09/06
"""

import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F

'''1.数据预处理'''
def pre_process(sentences):
    # 最大句子长度:3
    sequence_length = 0
    for sen in sentences:
        if len(sen.split()) > sequence_length:
            sequence_length = len(sen.split())
    # 根据最大句子长度,把所有句子填充成相同长度
    for i in range(len(sentences)):
        if sequence_length > len(sentences[i].split()):
            sentences[i] = sentences[i] + \
                (" " + "''") * (sequence_length - len(sentences[i].split()))
    # 分词
    # ['i', 'love', 'you', 'he', 'loves', 'me', 'she', 'likes', 'baseball', 'i', 'hate', 'you', 'sorry', 'for', 'that', 'this', 'is', 'awful']
    word_sequence = " ".join(sentences).split()
    # 去重
    word_list = list(set(word_sequence))
    # 生成字典
    word_dict = {w: i for i, w in enumerate(word_list)}  # 注意:单词是键,序号是值
    # 词库大小:16
    vocab_size = len(word_dict)

    return word_sequence, word_list, word_dict, vocab_size, sentences, sequence_length


'''构建模型'''
class TextCNN(nn.Module):  # nn.Module是Word2Vec的父类
    def __init__(self):
        '''
        super().__init__()
        继承父类的所有方法(),比如nn.Module的add_module()和parameters()
        '''
        super().__init__()

        """输入层"""
        '''W = nn.Embedding(num_embeddings,embedding_dim) -> 嵌入矩阵
        Args:
            num_embeddings (int): 嵌入字典的大小(单词总数) -> 嵌入向量个数(去重)
            embedding_dim (int): 每个嵌入向量的维度(即嵌入向量的长度)
        Returns:
            X:(sequence_length, words) -> W(X):(sequence_length, words, embedding_dim)
            W(X)相当于给X中的6*3个单词,每个输出一个长度为2的嵌入向量(不去重)
        '''
        # (16,2) X:(6,3) -> W(X):[6,3,2]:[样本数, 样本单词数, 嵌入向量长度]
        num_embeddings = vocab_size
        self.W = nn.Embedding(num_embeddings, embedding_size)
        
        """卷积层"""
        self.filter_sizes = filter_sizes # [2, 2, 2]卷积核大小:2x2,双通道
        self.sequence_length = sequence_length # 样本单词数
        modules = [] 
        '''nn.Conv2d(in_channels, out_channels, kernel_size)
        对于通道数为in_channels的图像(嵌入矩阵),用out_channels个大小为kernel_size的核叠加卷积
        Args:
            in_channels (int): 输入图像中的通道数
            out_channels (int): 卷积产生的通道数(即用几个卷积核叠加)
            kernel_size (int or tuple): 卷积内核的大小
        '''
        for size in filter_sizes: # filter_sizes:卷积核宽度(即上下文词距)
            # 卷积核输出通道数num_channels=4, 嵌入向量维度embedding_size=2 
            # nn.Conv2d(1, 卷积核输出通道数, (卷积核大小, 嵌入向量大小)) nn.Conv2d(1,4,2,2)
            # 和图片不同,由于词元具有不可分割性,所以卷积核的长度必须是嵌入向量长度
            modules.append(nn.Conv2d(1, num_channels, (size, embedding_size)))
        self.filter_list = nn.ModuleList(modules)

        """全连接层/输出层"""
        # 卷积核最终输出通道数 * 卷积核数量 = 最终通道数(此实验中各卷积核完全一样,其实可以不同)
        self.num_filters_total = num_channels * len(filter_sizes) # 4*3=12 
        # 通过全连接层,把卷积核最终输出通道转换为情感类别
        self.Weight = nn.Linear(self.num_filters_total, num_classes, bias=False)
        # nn.Parameter()设置可训练参数,用作偏差b
        self.Bias = nn.Parameter(torch.ones(num_classes)) # (2,)

    def forward(self, X): # X:(6,3)
        """输入层"""
        # [batch_size, sequence_length, sequence_length]
        embedded_chars = self.W(X) # [6,3,2]
        # add channel(=1) [batch, channel(=1), sequence_length, embedding_size]
        embedded_chars = embedded_chars.unsqueeze(1) # [6,1,3,2]

        """卷积层"""
        pooled_outputs = []
        for i, conv in enumerate(self.filter_list):
            # conv : [input_channel(=1), output_channel(=3), (filter_height, filter_width), bias_option]
            h = F.relu(conv(embedded_chars))
            # mp : ((filter_height, filter_width))
            mp = nn.MaxPool2d((self.sequence_length - self.filter_sizes[i] + 1, 1))
            # pooled : [batch_size(=6), output_height(=1), output_width(=1), output_channel(=3)]
            pooled = mp(h).permute(0, 3, 2, 1)
            pooled_outputs.append(pooled)

        # [batch_size(=6), output_height(=1), output_width(=1), output_channel(=3) * 3]
        h_pool = torch.cat(pooled_outputs, len(self.filter_sizes))
        # [batch_size(=6), output_height * output_width * (output_channel * 3)]
        h_pool_flat = torch.reshape(h_pool, [-1, self.num_filters_total])
        # [batch_size, num_classes]

        """输出层"""
        output = self.Weight(h_pool_flat) + self.Bias
        return output

# num_channels, filter_sizes, vocab_size, embedding_size, sequence_length
if __name__ == '__main__':
    '''本文没有用随机采样法,因此也就没有batch_size和random_batch()'''
    embedding_size = 2  # 嵌入矩阵大小,即样本特征数,即嵌入向量的"长度"
    num_classes = 2  # 情感类别数
    filter_sizes = [2, 2, 2]  # n-gram windows 3个卷积核的宽度(即上下文词距)
    num_channels = 4  # number of filters 卷积核输出通道数
    sentences = ["i love you", "he loves me", "she likes baseball",
                 "i hate you", "sorry for that", "this is awful"]
    labels = [1, 1, 1, 0, 0, 0]  # 1 is good, 0 is not good.

    '''1.数据预处理'''
    word_sequence, word_list, word_dict, \
    vocab_size, sentences, sequence_length = pre_process(sentences)
    '''2.构建模型'''
    # 构建输入输出矩阵向量
    inputs = []
    for sen in sentences:
        inputs.append([word_dict[word] for word in sen.split()])
    inputs = np.array(inputs) #(6,3)
    targets = np.array(labels)  # [1 1 1 0 0 0]
    inputs = torch.LongTensor(inputs)
    targets = torch.LongTensor(targets)  # To using Torch Softmax Loss function

    # 设置模型参数
    model = TextCNN()
    criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
    optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam动量法
    k = 0
    # Training
    for epoch in range(5000):
        optimizer.zero_grad()  # 把梯度置零,即把loss关于weight的导数变成0.
        output = model(inputs)
        # output : [batch_size, num_classes]
        # targets: [batch_size,] (LongTensor, not one-hot)
        loss = criterion(output, targets)  # 将输出与真实目标值对比,得到损失值
        loss.backward()  # 将损失loss向输入侧进行反向传播,梯度累计
        optimizer.step()  # 根据优化器对W、b和WT、bT等参数进行更新(例如Adam和SGD)
        if ((epoch+1) % 1000 == 0):
            print('Epoch:%d' % (epoch+1), 'cost=%.6f' % loss)

    if (1 == k):
        '''预测'''
        test_text = 'sorry hate you'
        test_words = test_text.split()
        tests = [np.array([word_dict[word] for word in test_words])]
        tests = np.array(tests)
        test_batch = torch.LongTensor(tests)

        # Predict
        predict = model(test_batch).data.max(1, keepdim=True)[1]
        print(test_text+":%d" % predict[0][0])


这篇关于基于TextCNN的文本情感分类的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程