大数据开发离线计算框架知识点总结
2022/10/15 2:23:52
本文主要是介绍大数据开发离线计算框架知识点总结,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
大数据开发离线计算框架知识点总结,大数据在带来发展机遇的同时,也带来了新的挑战,催生了新技术的发展和旧技术的革新。大数据离线计算技术应用于静态数据的离线计算和处理,框架设计的初衷是为了解决大规模、非实时数据计算,更加关注整个计算框架的吞吐量。大数据离线计算框架介绍:
一、MapReduce计算框架
Hadoop是一个分布式系统架构,由Apache基金会所开发,其核心主要包括两个组件:HDFS和MapReduce,前者为海量存储提供了存储,而后者为海量的数据提供了计算。这里我们主要关注MapReduce。以下资料来源于Hadoop的官方说明文档和论文。
MapReduce是一个使用简易的软件框架,基于它写出来的应用程序能够运行在由上千个商用机器组成的大型集群上,并以一种可靠容错的方式并行处理上T级别的数据集。将计算过程分为两个阶段,Map和Reduce,Map阶段并行处理输入的数据,Reduce阶段对Map结果进行汇总。
一个MapReduce作业通常会把输入的数据集切分为若干独立的数据块,由Map任务以完全并行的方式处理它们。框架会对Map的输出先进行排序,然后把结果输入给Reduce任务。通常作业的输入和输出都会被存储在文件系统中。整个框架负责任务的调度和监控,以及重新执行已经失败的任务。
通常,MapReduce框架和分布式文件系统是运行在一组相同的节点上的,也就是说,计算节点和存储节点通常在一起。这种配置允许框架在那些已经存好数据的节点上高效地调度任务,这可以使整个集群的网络带宽被非常高效地利用。
MapReduce框架由一个单独的master JobTracker 和每个集群节点一个slave TaskTracker共同组成。master负责调度构成一个作业的所有任务,这些任务分布在不同的slave上,master监控它们的执行,重新执行已经失败的任务。而slave仅负责执行由master指派的任务。
应用程序至少应该指明输入/输出的路径,并通过实现合适的接口或抽象类提供map和reduce函数。再加上其他作业的参数,就构成了作业配置。然后,Hadoop的Job Client提交作业和配置信息给JobTracker,后者负责分发这些软件和配置信息给slave、调度任务并监控它们的执行,同时提供状态和诊断信息给Job Client。
应用程序通常会通过提供map和reduce来实现 Mapper和Reducer接口,它们组成作业的核心。map函数接受一个键值对,产生一组中间键值对。MapReduce框架会将map函数产生的中间键值对中键相同的值传递给一个reduce函数。reduce函数接受一个键,以及相关的一组值,将这组值进行合并产生一组规模更小的值。
MapReduce的工作流程中,一切都是从最上方的user program开始的,user program链接了MapReduce库,实现了最基本的Map函数和Reduce函数。图中执行的顺序都用数字标记了。
二、Spark计算框架
Spark基于MapReduce算法实现的离线计算,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的Map Reduce的算法。
Spark中一个主要的结构是RDD(Resilient Distributed Datasets),这是一种只读的数据划分,并且可以在丢失之后重建。它利用了Lineage的概念实现容错,如果一个RDD丢失了,那么有足够的信息支持RDD重建。RDD可以被认为是提供了一种高度限制的共享内存,但是这些限制可以使得自动容错的开支变得很低。
RDD使用Lineage的容错机制,即每一个RDD都包含关于它是如何从其他RDD变换过来的以及如何重建某一块数据的信息。RDD仅支持粗颗粒度变换,即仅记录在单个块上执行的单个操作,然后创建某个RDD的变换序列存储下来,当数据丢失时,我们可以用变换序列来重新计算,恢复丢失的数据,以达到容错的目的。
Spark中的应用程序称为驱动程序,这些驱动程序可实现在单一节点上执行的操作或在一组节点上并行执行的操作。驱动程序可以在数据集上执行两种类型的操作:动作和转换。动作会在数据集上执行一个计算,并向驱动程序返回一个值;而转换会从现有数据集中创建一个新的数据集。动作的示例包括执行一个Reduce操作以及在数据集上进行迭代。转换示例包括Map操作和Cache操作。
与Hadoop类似,Spark支持单节点集群或多节点集群。对于多节点操作,Spark依赖于Mesos集群管理器。Mesos为分布式应用程序的资源共享和隔离提供了一个有效平台
这篇关于大数据开发离线计算框架知识点总结的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-14使用AWS Lambda和S3打造智能文件整理器 - (动手搭建系列)
- 2024-11-14Netflix简化营收基础设施中的合同管理工具
- 2024-11-142024年必备的6款开源Terraform神器
- 2024-11-14Spin 3.0来啦:全新功能让你的无服务器Wasm应用开发更上一层楼
- 2024-11-14如何高效管理项目?小团队到大企业的多功能项目管理工具推荐
- 2024-11-1333 张高清大图,带你玩转 KubeSphere 4.1.2 部署与扩展组件安装
- 2024-11-11Spark 新作《循序渐进 Spark 大数据应用开发》简介
- 2024-11-11KubeSphere 社区双周报| 2024.10.25-11.07
- 2024-11-11云原生周刊:Istio 1.24.0 正式发布
- 2024-11-10一个故事,为你理清云开发服务的选择思路