python实现数据预处理之填充缺失值的示例
2019/7/13 22:29:40
本文主要是介绍python实现数据预处理之填充缺失值的示例,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
1、给定一个数据集noise-data-1.txt,该数据集中保护大量的缺失值(空格、不完整值等)。利用“全局常量”、“均值或者中位数”来填充缺失值。
noise-data-1.txt:
5.1 3.5 1.4 0.2 4.9 3 1.4 0.2 4.7 3.2 1.3 0.2 4.6 3.1 1.5 0.2 5 3.6 1.4 0.2 5.4 3.9 1.7 0.4 4.6 3.4 1.4 0.3 5 3.4 1.5 0.2 4.4 2.9 1.4 0.2 4.9 -3.1 1.5 0.1 5.4 3.7 1.5 0.2 4.8 3.4 1.6 0.2 4.8 3 -1.4 0.1 4.3 3 1.1 0.1 5.8 4 1.2 0.2 5.7 4.4 1.5 0.4 5.4 3.9 1.3 0.4 5.1 3.5 1.4 0.3 5.7 3.8 1.7 0.3 5.1 3.8 -1.5 0.3 5.4 3.4 1.7 0.2 5.1 3.7 1.5 0.4 4.6 3.6 1 0.2 5.1 3.3 1.7 0.5 4.8 3.4 1.9 0.2
解题思路:首先读入数据,对数据进行处理,去掉空行,利用 “均值来填充缺失值,本题利用Python语言实现,代码如下:
import numpy as np data = [] my_list = [] con=0 noise_data = open('noise-data-1.txt') clean_data = open("clean_data3.txt", 'w') for line in noise_data.readlines(): if len(line) == 0: break if line.count('\n') == len(line): continue dataline =line.strip().split('\t') my_list.append(dataline) con+=1 for i in range(0,con): for j in range(0,len(my_list[i])): if my_list[i][j].count('.')==0: miss_row=[] for a in range(0,len(my_list[i])): if float(my_list[i][a])<0: miss_row.append(-float(my_list[i][a])) miss_row.append(float(my_list[i][a])) my_average=round(np.average(miss_row),1) my_list[i][j]=my_average else: if float(my_list[i][j])<0: my_list[i][j]=-float(my_list[i][j]) my_list[i][j]=float(my_list[i][j]) print my_list def file_write(filename,data_list): file1=open(filename,'w') for i in data_list: for j in i: if type(j)!=str: j=str(j) file1.write(j) file1.write(' ') file1.write('\n') file1.close() return file1 filename='clean_data.txt' file_write(filename,my_list)
运行结果如下:
以上这篇python实现数据预处理之填充缺失值的示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持找一找教程网。
这篇关于python实现数据预处理之填充缺失值的示例的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-24Python编程基础详解
- 2024-11-21Python编程基础教程
- 2024-11-20Python编程基础与实践
- 2024-11-20Python编程基础与高级应用
- 2024-11-19Python 基础编程教程
- 2024-11-19Python基础入门教程
- 2024-11-17在FastAPI项目中添加一个生产级别的数据库——本地环境搭建指南
- 2024-11-16`PyMuPDF4LLM`:提取PDF数据的神器
- 2024-11-16四种数据科学Web界面框架快速对比:Rio、Reflex、Streamlit和Plotly Dash
- 2024-11-14获取参数学习:Python编程入门教程