Python实现的快速排序算法详解
2019/7/13 22:53:24
本文主要是介绍Python实现的快速排序算法详解,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
本文实例讲述了Python实现的快速排序算法。分享给大家供大家参考,具体如下:
快速排序基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
如序列[6,8,1,4,3,9],选择6作为基准数。从右向左扫描,寻找比基准数小的数字为3,交换6和3的位置,[3,8,1,4,6,9],接着从左向右扫描,寻找比基准数大的数字为8,交换6和8的位置,[3,6,1,4,8,9]。重复上述过程,直到基准数左边的数字都比其小,右边的数字都比其大。然后分别对基准数左边和右边的序列递归进行上述方法。
实现代码如下:
def parttion(v, left, right): key = v[left] low = left high = right while low < high: while (low < high) and (v[high] >= key): high -= 1 v[low] = v[high] while (low < high) and (v[low] <= key): low += 1 v[high] = v[low] v[low] = key return low def quicksort(v, left, right): if left < right: p = parttion(v, left, right) quicksort(v, left, p-1) quicksort(v, p+1, right) return v s = [6, 8, 1, 4, 3, 9, 5, 4, 11, 2, 2, 15, 6] print("before sort:",s) s1 = quicksort(s, left = 0, right = len(s) - 1) print("after sort:",s1)
运行结果:
before sort: [6, 8, 1, 4, 3, 9, 5, 4, 11, 2, 2, 15, 6] after sort: [1, 2, 2, 3, 4, 4, 5, 6, 6, 8, 9, 11, 15]
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。
这篇关于Python实现的快速排序算法详解的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-24Python编程基础详解
- 2024-11-21Python编程基础教程
- 2024-11-20Python编程基础与实践
- 2024-11-20Python编程基础与高级应用
- 2024-11-19Python 基础编程教程
- 2024-11-19Python基础入门教程
- 2024-11-17在FastAPI项目中添加一个生产级别的数据库——本地环境搭建指南
- 2024-11-16`PyMuPDF4LLM`:提取PDF数据的神器
- 2024-11-16四种数据科学Web界面框架快速对比:Rio、Reflex、Streamlit和Plotly Dash
- 2024-11-14获取参数学习:Python编程入门教程