python调用百度语音识别实现大音频文件语音识别功能
2019/7/15 0:22:21
本文主要是介绍python调用百度语音识别实现大音频文件语音识别功能,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
本文为大家分享了python实现大音频文件语音识别功能的具体代码,供大家参考,具体内容如下
实现思路:先用ffmpeg将其他非wav格式的音频转换为wav格式,并转换音频的声道(百度支持声道为1),采样率(值为8000),格式转换完成后,再用ffmpeg将音频切成百度。
支持的时长(30秒和60秒2种,本程序用的是30秒)。
# coding: utf-8 import json import time import base64 from inc import rtysdb import urllib2 import requests import os import uuid from inc import db_config class BaiduRest: def __init__(self, cu_id, api_key, api_secert): self.token_url = "https://openapi.baidu.com/oauth/2.0/token?grant_type=client_credentials&client_id=%s&client_secret=%s" self.getvoice_url = "http://tsn.baidu.com/text2audio?tex=%s&lan=zh&cuid=%s&ctp=1&tok=%s" self.upvoice_url = 'http://vop.baidu.com/server_api' self.cu_id = cu_id self.get_token(api_key, api_secert) return def get_token(self, api_key, api_secert): token_url = self.token_url % (api_key, api_secert) r_str = urllib2.urlopen(token_url).read() token_data = json.loads(r_str) self.token_str = token_data['access_token'] return True # 语音合成 def text2audio(self, text, filename): get_url = self.getvoice_url % (urllib2.quote(text), self.cu_id, self.token_str) voice_data = urllib2.urlopen(get_url).read() voice_fp = open(filename, 'wb+') voice_fp.write(voice_data) voice_fp.close() return True ##语音识别 def audio2text(self, filename): data = {} data['format'] = 'wav' data['rate'] = 8000 data['channel'] = 1 data['cuid'] = self.cu_id data['token'] = self.token_str wav_fp = open(filename, 'rb') voice_data = wav_fp.read() data['len'] = len(voice_data) # data['speech'] = base64.b64encode(voice_data).decode('utf-8') data['speech'] = base64.b64encode(voice_data).replace('\n', '') # post_data = json.dumps(data) result = requests.post(self.upvoice_url, json=data, headers={'Content-Type': 'application/json'}) data_result = result.json() if(data_result['err_msg'] == 'success.'): return data_result['result'][0] else: return False def test_voice(voice_file): api_key = "vossGHIgEETS6IMRxBDeahv8" api_secert = "3c1fe6a6312f41fa21fa2c394dad5510" bdr = BaiduRest("0-57-7B-9F-1F-A1", api_key, api_secert) # 生成 #start = time.time() #bdr.text2audio("你好啊", "out.wav") #using = time.time() - start #print using # 识别 #start = time.time() result = bdr.audio2text(voice_file) # result = bdr.audio2text("weather.pcm") #using = time.time() - start return result def get_master_audio(check_status='cut_status'): if check_status == 'cut_status': sql = "SELECT id,url, time_long,sharps FROM ocenter_recognition WHERE status=0" elif check_status == 'finished_status': sql = "SELECT id,url, time_long,sharps FROM ocenter_recognition WHERE finished_status=0" else: return False data = rtysdb.select_data(sql,'more') if data: return data else: return False def go_recognize(master_id): section_path = db_config.SYS_PATH sql = "SELECT id,rid,url,status FROM ocenter_section WHERE rid=%d AND status=0 order by id asc limit 10" % (master_id) #print sql record = rtysdb.select_data(sql,'more') #print record if not record: return False for rec in record: #print section_path+'/'+rec[1] voice_file = section_path+'/'+rec[2] if not os.path.exists(voice_file): continue result = test_voice(voice_file) print result exit(0) if result: #rtysdb.update_by_pk('ocenter_section',rec[0],{'content':result,'status':1}) sql = "update ocenter_section set content='%s', status='%d' where id=%d" % (result,1,rec[0]) #print sql rtysdb.do_exec_sql(sql) parent_content = rtysdb.select_data("SELECT id,content FROM ocenter_recognition WHERE id=%d" % (rec[1])) #print parent_content if parent_content: new_content = parent_content[1]+result update_content_sql = "update ocenter_recognition set content='%s' where id=%d" % (new_content,rec[1]) rtysdb.do_exec_sql(update_content_sql) else: rtysdb.do_exec_sql("update ocenter_section set status='%d' where id=%d" % (result,1,rec[0])) time.sleep(5) else: rtysdb.do_exec_sql("UPDATE ocenter_recognition SET finished_status=1 WHERE id=%d" % (master_id)) #对百度语音识别不了的音频文件进行转换 def ffmpeg_convert(): section_path = db_config.SYS_PATH #print section_path used_audio = get_master_audio('cut_status') #print used_audio if used_audio: for audio in used_audio: audio_path = section_path+'/'+audio[1] new_audio = uuid.uuid1() command_line = "ffmpeg -i "+audio_path +" -ar 8000 -ac 1 -f wav "+section_path+"/Uploads/Convert/convert_" + str(new_audio) +".wav"; #print command_line os.popen(command_line) if os.path.exists(section_path+"/Uploads/Convert/convert_" + str(new_audio) +".wav"): convert_name = "Uploads/Convert/convert_" + str(new_audio) +".wav" ffmpeg_cut(convert_name,audio[3],audio[0]) sql = "UPDATE ocenter_recognition SET status=1,convert_name='%s' where id=%d" % (convert_name,audio[0]) rtysdb.do_exec_sql(sql) #将大音频文件切成碎片 def ffmpeg_cut(convert_name,sharps,master_id): section_path = db_config.SYS_PATH if sharps>0: for i in range(0,sharps): timeArray = time.localtime(i*30) h = time.strftime("%H", timeArray) h = int(h) - 8 h = "0" + str(h) ms = time.strftime("%M:%S",timeArray) start_time = h+':'+str(ms) cut_name = section_path+'/'+convert_name db_store_name = "Uploads/Section/"+str(uuid.uuid1())+'-'+str(i+1)+".wav" section_name = section_path+"/"+db_store_name command_line = "ffmpeg.exe -i "+cut_name+" -vn -acodec copy -ss "+start_time+" -t 00:00:30 "+section_name #print command_line os.popen(command_line) data = {} data['rid'] = master_id data['url'] = db_store_name data['create_time'] = int(time.time()) data['status'] = 0 rtysdb.insert_one('ocenter_section',data) if __name__ == "__main__": ffmpeg_convert() audio = get_master_audio('finished_status') if audio: for ad in audio: go_recognize(ad[0])
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持找一找教程网。
这篇关于python调用百度语音识别实现大音频文件语音识别功能的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-28Python编程基础教程
- 2024-12-27Python编程入门指南
- 2024-12-27Python编程基础
- 2024-12-27Python编程基础教程
- 2024-12-27Python编程基础指南
- 2024-12-24Python编程入门指南
- 2024-12-24Python编程基础入门
- 2024-12-24Python编程基础:变量与数据类型
- 2024-12-23使用python部署一个usdt合约,部署自己的usdt稳定币
- 2024-12-20Python编程入门指南