- NumPy环境安装配置
- NumPy Ndarray对象
- NumPy数据类型
- NumPy数组属性
- NumPy数组创建例程
- NumPy来自现有数据的数组
- NumPy来自数值范围的数组
- NumPy切片和索引
- NumPy高级索引
- NumPy广播
- NumPy在数组上的迭代
- NumPy数组操作
- NumPy位操作
- NumPy字符串函数
- NumPy数学算数函数
- NumPy算数运算
- NumPy统计函数
- NumPy排序、搜索和计数函数
- NumPy字节交换
- NumPy副本和视图
- NumPy矩阵库
- NumPy线性代数
- NumPy Matplotlib库
- NumPy使用 Matplotlib 绘制直方图
- NumPy IO文件操作
NumPy IO文件操作
NumPy - IO
ndarray
对象可以保存到磁盘文件并从磁盘文件加载。 可用的 IO 功能有:
load()
和save()
函数处理 numPy 二进制文件(带npy
扩展名)loadtxt()
和savetxt()
函数处理正常的文本文件
NumPy 为ndarray
对象引入了一个简单的文件格式。 这个npy
文件在磁盘文件中,存储重建ndarray
所需的数据、图形、dtype
和其他信息,以便正确获取数组,即使该文件在具有不同架构的另一台机器上。
numpy.save()" class="reference-link">numpy.save()
numpy.save()
文件将输入数组存储在具有npy
扩展名的磁盘文件中。
import numpy as np a = np.array([1,2,3,4,5]) np.save('outfile',a)
为了从outfile.npy
重建数组,请使用load()
函数。
import numpy as np b = np.load('outfile.npy') print b
输出如下:
array([1, 2, 3, 4, 5])
save()
和load()
函数接受一个附加的布尔参数allow_pickles
。 Python 中的pickle
用于在保存到磁盘文件或从磁盘文件读取之前,对对象进行序列化和反序列化。
savetxt()" class="reference-link">savetxt()
以简单文本文件格式存储和获取数组数据,是通过savetxt()
和loadtx()
函数完成的。
示例
import numpy as np a = np.array([1,2,3,4,5]) np.savetxt('out.txt',a) b = np.loadtxt('out.txt') print b
输出如下:
[ 1. 2. 3. 4. 5.]
savetxt()
和loadtxt()
数接受附加的可选参数,例如页首,页尾和分隔符。
下一篇:没有了
扫描二维码
程序员编程王