R语言数据帧
数据帧是一个表或二维类似数组的结构,其中每列包含一个变量的值,每行包含来自每一列的一组值。
以下是数据帧的特征 -
- 列名称应该不为空。
- 行名称应该是唯一的。
- 存储在数据帧中的数据可以是数字,因子或字符类型。
- 每列应包含相同数量的数据项。
创建数据帧
# Create the data frame. emp.data <- data.frame( emp_id = c (1:5), emp_name = c("Rick","Dan","Michelle","Ryan","Gary"), salary = c(623.3,515.2,611.0,729.0,843.25), start_date = as.Date(c("2017-01-01", "2017-09-23", "2017-11-15", "2017-05-11", "2018-03-27")), stringsAsFactors = FALSE ) # Print the data frame. print(emp.data)
当我们执行上述代码时,会产生以下结果 -
emp_id emp_name salary start_date Rick 623.30 2017-01-01 Dan 515.20 2017-09-23 Michelle 611.00 2017-11-15 Ryan 729.00 2017-05-11 Gary 843.25 2018-03-27
获取数据帧的结构
通过使用str()
函数可以查看数据帧的结构,参考以下代码实现 -
# Create the data frame. emp.data <- data.frame( emp_id = c (1:5), emp_name = c("Rick","Dan","Michelle","Ryan","Gary"), salary = c(623.3,515.2,611.0,729.0,843.25), start_date = as.Date(c("2017-01-01", "2017-09-23", "2017-11-15", "2017-05-11", "2018-03-27")), stringsAsFactors = FALSE ) # Get the structure of the data frame. str(emp.data)
当我们执行上述代码时,会产生以下结果 -
'data.frame': 5 obs. of 4 variables: $ emp_id : int 1 2 3 4 5 $ emp_name : chr "Rick" "Dan" "Michelle" "Ryan" ... $ salary : num 623 515 611 729 843 $ start_date: Date, format: "2017-01-01" "2017-09-23" ...
数据帧数据摘要
数据的统计摘要和性质可以通过应用summary()
函数获得。
# Create the data frame. emp.data <- data.frame( emp_id = c (1:5), emp_name = c("Rick","Dan","Michelle","Ryan","Gary"), salary = c(623.3,515.2,611.0,729.0,843.25), start_date = as.Date(c("2015-01-01", "2016-09-23", "2017-11-15", "2018-05-11", "2018-03-27")), stringsAsFactors = FALSE ) # Print the summary.
当我们执行上述代码时,会产生以下结果 -
emp_id emp_name salary start_date Min. :1 Length:5 Min. :515.2 Min. :2015-01-01 1st Qu.:2 Class :character 1st Qu.:611.0 1st Qu.:2016-09-23 Median :3 Mode :character Median :623.3 Median :2017-11-15 Mean :3 Mean :664.4 Mean :2017-03-28 3rd Qu.:4 3rd Qu.:729.0 3rd Qu.:2018-03-27 Max. :5 Max. :843.2 Max. :2018-05-11
从数据帧提取数据
使用列名称从数据帧中提取特定列。
# Create the data frame. emp.data <- data.frame( emp_id = c (1:5), emp_name = c("Rick","Dan","Michelle","Ryan","Gary"), salary = c(623.3,515.2,611.0,729.0,843.25), start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-11", "2015-03-27")), stringsAsFactors = FALSE ) # Extract Specific columns. result <- data.frame(emp.data$emp_name,emp.data$salary) print(result)
当我们执行上述代码时,会产生以下结果 -
emp.data.emp_name emp.data.salary Rick 623.30 Dan 515.20 Michelle 611.00 Ryan 729.00 Gary 843.25
提取前两行,然后提取所有列 -
# Create the data frame. emp.data <- data.frame( emp_id = c (1:5), emp_name = c("Rick","Dan","Michelle","Ryan","Gary"), salary = c(623.3,515.2,611.0,729.0,843.25), start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11", "2015-03-27")), stringsAsFactors = FALSE ) # Extract first two rows. result <- emp.data[1:2,] print(result)
当我们执行上述代码时,会产生以下结果 -
emp_id emp_name salary start_date Rick 623.3 2012-01-01 Dan 515.2 2013-09-23
提取第2列和第4列和第3行和第5列
# Create the data frame. emp.data <- data.frame( emp_id = c (1:5), emp_name = c("Rick","Dan","Michelle","Ryan","Gary"), salary = c(623.3,515.2,611.0,729.0,843.25), start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11", "2015-03-27")), stringsAsFactors = FALSE ) # Extract 3rd and 5th row with 2nd and 4th column. result <- emp.data[c(3,5),c(2,4)] print(result)
当我们执行上述代码时,会产生以下结果 -
emp_name start_date Michelle 2014-11-15 Gary 2015-03-27
扩展数据帧
可以通过添加列和行来扩展数据帧。
添加列
只需使用新的列名来添加列向量。参考以下示例代码 -
# Create the data frame. emp.data <- data.frame( emp_id = c (1:5), emp_name = c("Rick","Dan","Michelle","Ryan","Gary"), salary = c(623.3,515.2,611.0,729.0,843.25), start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11", "2015-03-27")), stringsAsFactors = FALSE ) # Add the "dept" coulmn. emp.data$dept <- c("IT","Operations","IT","HR","Finance") v <- emp.data print(v)
当我们执行上述代码时,会产生以下结果 -
emp_id emp_name salary start_date dept Rick 623.30 2012-01-01 IT Dan 515.20 2013-09-23 Operations Michelle 611.00 2014-11-15 IT Ryan 729.00 2014-05-11 HR Gary 843.25 2015-03-27 Finance
添加行
要将更多行永久添加到现有数据帧,需要使用与现有数据帧相同结构的新行,并使用rbind()
函数。
在下面的示例中,我们使用新行创建一个数据帧,并将其与现有的数据帧进行合并,以创建最终的数据帧。
# Create the first data frame. emp.data <- data.frame( emp_id = c (1:5), emp_name = c("Rick","Dan","Michelle","Ryan","Gary"), salary = c(623.3,515.2,611.0,729.0,843.25), start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11", "2015-03-27")), dept = c("IT","Operations","IT","HR","Finance"), stringsAsFactors = FALSE ) # Create the second data frame emp.newdata <- data.frame( emp_id = c (6:8), emp_name = c("Rasmi","Pranab","Tusar"), salary = c(578.0,722.5,632.8), start_date = as.Date(c("2013-05-21","2013-07-30","2014-06-17")), dept = c("IT","Operations","Fianance"), stringsAsFactors = FALSE ) # Bind the two data frames. emp.finaldata <- rbind(emp.data,emp.newdata) print(emp.finaldata)
当我们执行上述代码时,会产生以下结果 -
emp_id emp_name salary start_date dept Rick 623.30 2012-01-01 IT Dan 515.20 2013-09-23 Operations Michelle 611.00 2014-11-15 IT Ryan 729.00 2014-05-11 HR Gary 843.25 2015-03-27 Finance Rasmi 578.00 2013-05-21 IT Pranab 722.50 2013-07-30 Operations Tusar 632.80 2014-06-17 Fianance
扫描二维码
程序员编程王