- TensorFlow简介
- TensorFlow安装
- 人工智能简介
- TensorFlow数学基础
- 机器学习和深度学习
- TensorFlow基础
- TensorFlow卷积神经网络
- TensorFlow递归神经网络
- TensorFlow TensorBoard可视化
- TensorFlow单词嵌入
- TensorFlow单层感知
- TensorFlow线性回归
- TensorFlow TFLearn安装和使用
- TensorFlow CNN和RNN区别
- TensorFlow Keras
- TensorFlow分布式计算
- TensorFlow导出
- TensorFlow多层感知器学习
- TensorFlow感知器隐藏层
- TensorFlow优化器
- TensorFlow XOR实现
- TensorFlow梯度下降优化
- TensorFlow成型图表
- TensorFlow识别图像
- 神经网络训练的建议
TensorFlow教程
关于 TensorFlow
TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等。TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机器学习和深度神经网络方面的研究,但这个系统的通用性使其也可广泛用于其他计算领域。
TensorFlow运作方式入门
代码:tensorflow/g3doc/tutorials/mnist/
本篇教程的目的,是向大家展示如何利用TensorFlow使用(经典)MNIST数据集训练并评估一个用于识别手写数字的简易前馈神经网络(feed-forward neural network)。我们的目标读者,是有兴趣使用TensorFlow的资深机器学习人士。
因此,撰写该系列教程并不是为了教大家机器学习领域的基础知识。
在学习本教程之前,请确保您已按照安装TensorFlow教程中的要求,完成了安装。
扫描二维码
程序员编程王