PyTorch 1.5上线:加入稳定C++前端,高级自动梯度API
2021/6/4 12:23:18
本文主要是介绍PyTorch 1.5上线:加入稳定C++前端,高级自动梯度API,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
点击上方 "程序员小乐"关注, 星标或置顶一起成长
每天凌晨00点00分, 第一时间与你相约
每日英文
Never expect. Never assume. And never demand. Just let it be. If it's meant to be, it will happen.
不要期待,不要假想,不要强求,顺其自然,如果注定,便一定会发生。
每日掏心话
千万不要被胜利冲昏头脑。得意忘形的人,常常会因一时的兴奋而失去理智,看不清眼前的形势和未来的趋势,这样势必会使他不再像以前那样努力,更不会像以前那样稳重。
来自:公众号 机器之心 | 责编:乐乐
程序员小乐(ID:study_tech) 第 853 次推文 图源:百度往日回顾:史上最污技术解读,我竟然秒懂了
正文
在新版本中,Facebook 与 AWS 还合作共同推出了大规模生产级工具库 TorchServe。
今天,PyTorch 1.5 宣布上线,此版本主要包括几个新的 API 的添加和改进。新版 PyTorch 包括对 C++前端的重大更新,用于计算机视觉模型的「channels last」存储格式,以及用于模型并行训练的分布式 RPC 框架的稳定版本。该版本还提供了针对自动求导机制中黑塞和雅可比的新 API,以及受 pybind 启发,允许用户创建自定义 C++类的一个 API。另外,torch_xla 已可在 PyTorch 1.5 版中使用,并在 1.5 版本中进行了测试,可提供成熟的 Cloud TPU 体验。
版本说明:github.com/pytorch/pytorch/releases/tag/v1.5.0
主要变化
以下是 PyTorch 1.5 版本的主要变化
C++ 前端 API(稳定型)
现在 C++前端 API 与 Python 版同等丰富,之前实验性的功能都已移到「稳定版」中。主要亮点如下:
专为计算机视觉设计的「Channels last」储存格式(实验型)
「Channels last」储存布局解锁了使用高效卷积算法与硬件的能力。另外,它被设计为在众多运算中自动传播,使得用户能在不同储存布局间轻松切换。
自定义 C++类(实验型)
这次发布的版本中加入了 torch.CutomClassHolder 这一新的 API,能够将自定义的 C++类同时绑定到 TorchScript 和 Python 中。该 API 的用法几乎与 pybind11 相同,它允许用户将自定义的 C++类与方法暴露给 TorchScript 类型的系统,这使得用户能够从 TorchScript 和 Python 中实例化并操纵任意 C++对象。
以下为一个官方给出的实例:
template <class T> struct MyStackClass : torch::CustomClassHolder { std::vector<T> stack_; MyStackClass(std::vector<T> init) : stack_(std::move(init)) {} void push(T x) { stack_.push_back(x); } T pop() { auto val = stack_.back(); stack_.pop_back(); return val; } }; static auto testStack = torch::class_<MyStackClass<std::string>>("myclasses", "MyStackClass") .def(torch::init<std::vector<std::string>>()) .def("push", &MyStackClass<std::string>::push) .def("pop", &MyStackClass<std::string>::pop) .def("size", [](const c10::intrusive_ptr<MyStackClass>& self) { return self->stack_.size(); });
上述代码就暴露了一个类,用户可在 TorchScript 和 Python 中用如下方式调用:
@torch.jit.script def do_stacks(s : torch.classes.myclasses.MyStackClass): s2 = torch.classes.myclasses.MyStackClass(["hi", "mom"]) print(s2.pop()) # "mom" s2.push("foobar") return s2 # ["hi", "foobar"]
分布式 RPC 框架 API(稳定型)
分布式 RPC 框架在 1.4 版中作为实验性功能发布。当前版本涉及大量针对分布式 RPC 框架的可靠性与鲁棒性的功能强化以及错误修复,并加入了如性能调试支持、在 RPC 中使用 TorchScript 功能等一系列新功能。以下为该框架下各种 API 总览:
全新的高级 autograd API(实验型)
PyTorch 将包括 jacobian,hessian,jvp,vjp,hvp 和 vhp 在内的新函数导入到了 torch.autograd.functional 子模块中。这个特性建立在当前的 API 之上,允许用户轻松地执行这些函数。
不再支持 Python 2
从 1.5.0 开始,PyTorch 将不再支持 Python 2,具体来说是 Python 2.7。PyTorch 对 Python 的支持将仅限于 Python 3,特别是 Python 3.5、3.6、3.7 和 3.8(首先在 PyTorch 1.4.0 中启用)。
参考链接:pytorch.org/blog/pytorch-1-dot-5-released-with-new-and-updated-apis/
欢迎在留言区留下你的观点,一起讨论提高。如果今天的文章让你有新的启发,学习能力的提升上有新的认识,欢迎转发分享给更多人。
欢迎各位读者加入订阅号程序员小乐技术群,在后台回复“加群”或者“学习”即可。
猜你还想看
阿里、腾讯、百度、华为、京东最新面试题汇集
如果世界上只有一种数据结构,那么我选择 hash
深入理解Spring的ImportSelector接口
Git 如何优雅地回退代码,用 reset 还是 revert ?
关注订阅号「程序员小乐」,收看更多精彩内容
嘿,你在看吗?
这篇关于PyTorch 1.5上线:加入稳定C++前端,高级自动梯度API的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-21动态面包屑教程:新手入门指南
- 2024-12-21动态主题处理教程:新手必读指南
- 2024-12-21富文本编辑器教程:新手入门指南
- 2024-12-21前端项目部署教程:从零开始的全面指南
- 2024-12-21拖拽表格教程:轻松入门指南
- 2024-12-21Element-Plus教程:新手入门与实战指南
- 2024-12-21TagsView标签栏导航教程:轻松掌握标签栏导航
- 2024-12-21动态表格实战:新手入门教程
- 2024-12-21动态菜单项实战:一步步教你实现动态菜单项
- 2024-12-21动态面包屑实战:新手教程