最优化算法最速下降法、牛顿法、拟牛顿法 Python实现
2021/6/12 12:22:47
本文主要是介绍最优化算法最速下降法、牛顿法、拟牛顿法 Python实现,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
---------------------------------------2020.9.23更新---------------------------------
把 BFGS(x)改写了一下,变简洁了
def BFGS(x): #拟牛顿法 epsilon, h, maxiter = 10**-5, 10**-5, 10**4 Bk = np.eye(x.size) for iter1 in range(maxiter): grad = num_grad(x, h) if np.linalg.norm(grad) < epsilon: return x dk = -np.dot((np.linalg.inv(Bk)), grad) ak = linesearch(x, dk) x = x + dk*ak yk = num_grad(x, h) -grad sk = ak*dk if np.dot(yk, sk) > 0: Bs = np.dot(Bk,sk) ys = np.dot(yk,sk) sBs = np.dot(np.dot(sk,Bk),sk) Bk = Bk - 1.0*Bs.reshape((n,1))*Bs/sBs + 1.0*yk.reshape((n,1))*yk/ys return x
---------------------------------------2020.9.23更新---------------------------------
只用到了numpy这一个库,只要安装有这个库应该都可以直接运行
import numpy as np def f(x): #目标函数 x1 = x[0] x2 = x[1] y = 100*((x2 - x1**2)**2) + (x1-1)**2 return y def num_grad(x, h): #求梯度 df = np.zeros(x.size) for i in range(x.size): x1, x2 = x.copy(), x.copy() #这里需要用到复制,而不能用赋值号(=),原因是Python里面=号只是取别名,不是复制(c/c++里面是) x1[i] = x[i] - h x2[i] = x[i] + h y1, y2 = f(x1), f(x2) df[i] = (y2-y1)/(2*h) return df def num_hess(x, h): #求hess矩阵 hess = np.zeros((x.size, x.size)) for i in range(x.size): x1 = x.copy() x1[i] = x[i] - h df1 = num_grad(x1, h) x2 = x.copy() x2[i] = x[i] + h df2 = num_grad(x2, h) d2f = (df2 - df1) / (2 * h) hess[i] = d2f return hess def linesearch(x, dk): #求步长 ak = 1 for i in range(20): newf, oldf = f(x + ak * dk), f(x) if newf < oldf: return ak else: ak = ak / 4 #迭代更新步长,步长可随意变换,保证newf比oldf小就可以了(如改为: ak=ak/2 也是可以的) return ak def steepest(x): #最速下降法 epsilon, h, maxiter = 10**-5, 10**-5, 10**4 for iter1 in range(maxiter): grad = num_grad(x, h) if np.linalg.norm(grad) < epsilon: return x dk = -grad ak = linesearch(x, dk) x = x + ak * dk return x def newTonFuction(x): #牛顿法 epsilon, h1, h2, maxiter = 10**-5, 10**-5, 10**-5, 10**4 for iter1 in range(maxiter): grad = num_grad(x, h1) if np.linalg.norm(grad) < epsilon: return x hess = num_hess(x, h2) dk = -np.dot((np.linalg.inv(hess)), grad) x = x + dk return x def BFGS(x): #拟牛顿法 epsilon, h, maxiter = 10**-5, 10**-5, 10**4 Bk = np.eye(x.size) for iter1 in range(maxiter): grad = num_grad(x, h) if np.linalg.norm(grad) < epsilon: return x dk = -np.dot((np.linalg.inv(Bk)), grad) ak = linesearch(x, dk) x = x + dk*ak yk = num_grad(x, h) -grad sk = ak*dk if np.dot(yk.reshape(1, grad.shape[0]), sk) > 0: '''第一种分步计算实现 t0 = np.dot(Bk, sk) t1 = np.dot(t0.reshape(sk.shape[0], 1), sk.reshape(1, sk.shape[0])) temp0 = np.dot(t1, Bk) temp1 = np.dot(np.dot(sk.reshape(1, sk.shape[0]), Bk), sk) tmp0 = np.dot(yk.reshape(yk.shape[0], 1), yk.reshape(1, yk.shape[0])) tmp1 = np.dot(yk.reshape(1, yk.shape[0]), sk) Bk = Bk - temp0 / temp1 + tmp0 / tmp1 ''' #第二种直接写公式实现 Bk = Bk - np.dot(np.dot(np.dot(Bk, sk).reshape(sk.shape[0], 1), sk.reshape(1, sk.shape[0])), Bk)/np.dot(np.dot(sk.reshape(1, sk.shape[0]), Bk), sk) + np.dot(yk.reshape(yk.shape[0], 1), yk.reshape(1, yk.shape[0])) / np.dot(yk.reshape(1, yk.shape[0]), sk) return x #x0 = np.array([0.999960983973235, 0.999921911551354]) #初始解 x0 = np.array([0.7, 0.9]) #初始解 x = steepest(x0) #调用最速下降法 print("最速下降法最后的解向量:",x) print("最速下降法最后的解:",f(x)) print('') x = newTonFuction(x0) #调用牛顿法 print("牛顿法最后的解向量:", x) print("牛顿法最后的解:", f(x)) print('') x = BFGS(x0) #调用拟牛顿法 print("拟牛顿法最后的解向量:", x) print("拟牛顿法最后的解:", f(x)) print('')
结果如下
拟牛顿法感觉弄麻烦了,暂时也没想法改,先就这样吧
这篇关于最优化算法最速下降法、牛顿法、拟牛顿法 Python实现的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-24Python编程基础详解
- 2024-11-21Python编程基础教程
- 2024-11-20Python编程基础与实践
- 2024-11-20Python编程基础与高级应用
- 2024-11-19Python 基础编程教程
- 2024-11-19Python基础入门教程
- 2024-11-17在FastAPI项目中添加一个生产级别的数据库——本地环境搭建指南
- 2024-11-16`PyMuPDF4LLM`:提取PDF数据的神器
- 2024-11-16四种数据科学Web界面框架快速对比:Rio、Reflex、Streamlit和Plotly Dash
- 2024-11-14获取参数学习:Python编程入门教程