ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测+评估八种模型性能
2021/6/15 20:33:15
本文主要是介绍ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测+评估八种模型性能,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测+评估八种模型性能
目录
说明
输出结果
说明
在 ML之回归预测:利用九大类机器学习算法对无人驾驶汽车系统参数(18+2)进行回归预测值VS真实值
基础上出现了两个bug,成功解决。
(1)、成功解决TypeError: unhashable type: 'numpy.ndarray'
(2)、成功解决TypeError: unsupported operand type(s) for %: 'NoneType' and 'dict'
输出结果
1、在【12.9, 13.0】环境下
1.2、模型性能评估及输出预测值
各个模型结果
LiR | LiR:The value of default measurement of LiR is 0.4125342966025278 LiR:R-squared value of DecisionTreeRegressor: 0.41253429660252783 LiR:The mean squared error of DecisionTreeRegressor: 5.687204916076843 LiR:The mean absoluate error of DecisionTreeRegressor: 1.688779184910588 LiR:测试1131~1138行数据, [[0.39260249] [0.56158086] [0.66445704] [0.75795626] [0.83294215] [0.84325901]] |
|
SVM | linear_SVR:The value of default measurement of linear_SVR is 0.5024128304336872
|
|
DT | DTR:The value of default measurement of DTR is -0.034791814149233824 DTR:R-squared value of DecisionTreeRegressor: -0.034791814149233824 DTR:The mean squared error of DecisionTreeRegressor: 10.0177304964539 DTR:The mean absoluate error of DecisionTreeRegressor: 1.4078014184397163 DTR:测试1131~1138行数据, [1.44129906 1.1913833 1.1913833 1.1913833 1.1913833 0.94146754] |
|
RF | RFR:The value of default measurement of RFR is 0.7143901333350653 RFR:R-squared value of DecisionTreeRegressor: 0.7143901333350653 RFR:The mean squared error of DecisionTreeRegressor: 2.7649645390070923 RFR:The mean absoluate error of DecisionTreeRegressor: 1.0191489361702128 RFR:测试1131~1138行数据, |
|
ETR | ETR:The value of default measurement of ETR is 0.7895434913913477 ETR:R-squared value of DecisionTreeRegressor: 0.7895434913913478 ETR:The mean squared error of DecisionTreeRegressor: 2.0374113475177302 ETR:The mean absoluate error of DecisionTreeRegressor: 0.9790780141843972 ETR:测试1131~1138行数据, [1.29134961 1.01644227 1.04143384 1.16639172 1.14140015 1.09141699] |
|
GB/GD | SGDR:The value of default measurement of SGDR is 0.28663918777885733
|
|
LGB | [LightGBM] [Warning] feature_fraction is set=0.6, colsample_bytree=1.0 will be ignored. Current value: feature_fraction=0.6
|
2、在【12.8,13.0】环境下
这篇关于ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测+评估八种模型性能的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-03基于机器学习提升网页UI自动化测试的效果
- 2024-12-17机器学习资料入门指南
- 2024-12-06如何用OpenShift流水线打造高效的机器学习运营体系(MLOps)
- 2024-12-06基于无监督机器学习算法的预测性维护讲解
- 2024-12-03【机器学习(六)】分类和回归任务-LightGBM算法-Sentosa_DSML社区版
- 2024-12-0210个必须使用的机器学习API,为高级分析助力
- 2024-12-01【机器学习(五)】分类和回归任务-AdaBoost算法-Sentosa_DSML社区版
- 2024-11-28【机器学习(四)】分类和回归任务-梯度提升决策树(GBDT)算法-Sentosa_DSML社区版
- 2024-11-26【机器学习(三)】分类和回归任务-随机森林(Random Forest,RF)算法-Sentosa_DSML社区版
- 2024-11-18机器学习与数据分析的区别