线性回归房价预测
2021/6/19 0:04:41
本文主要是介绍线性回归房价预测,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
跟着李沐的动手学深度学习,跟着写了一遍房价预测的处理和预测,加了一些注释,同时稍微改动了一些地方
import hashlib import os import tarfile import zipfile import requests DATA_HUB = dict() DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/' def download(name, cache_dir = os.path.join('..', 'data')): """下载一个DATA_HUB中的文件,返回本地文件名。""" assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}." url, sha1_hash = DATA_HUB[name] os.makedirs(cache_dir, exist_ok=True) fname = os.path.join(cache_dir, url.split('/')[-1]) if os.path.exists(fname): sha1 = hashlib.sha1() with open(fname, 'rb') as f: while True: data = f.read(1048576) if not data: break sha1.update(data) if sha1.hexdigest() == sha1_hash: return fname print(f'正在从{url}下载{fname}...') r = requests.get(url, stream=True, verify=True) with open(fname, 'wb') as f: f.write(r.content) return fname %matplotlib inline import numpy as np import pandas as pd import torch from torch import nn import matplotlib.pyplot as plt # from d2l import torch as d2l from torch.utils import data DATA_HUB['kaggle_house_train'] = ( DATA_URL + 'kaggle_house_pred_train.csv', '585e9cc93e70b39160e7921475f9bcd7d31219ce') DATA_HUB['kaggle_house_test'] = ( DATA_URL + 'kaggle_house_pred_test.csv', 'fa19780a7b011d9b009e8bff8e99922a8ee2eb90') train_data = pd.read_csv(download('kaggle_house_train')) test_data = pd.read_csv(download('kaggle_house_test')) print(train_data.shape) print(test_data.shape) print(train_data.iloc[:4,[0,1,2,-3,-2,-1]]) print(test_data.iloc[:4,[0,1,2,-3,-2,-1]]) # 把训练集+测试集的特征放到一起,训练集的第0列是ID要去除,最后一列是标签 all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]), axis = 0) print(all_features.shape) # 找出所有数值列 numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index # 对数值列用非nan值的均值填充nan all_features[numeric_features] = all_features[numeric_features].apply( lambda x : x.fillna( value = x[[y is not np.nan for y in x]].mean() ) ) # 标准化所有数值列,变成均值为0,方差为1 all_features[numeric_features] = all_features[numeric_features].apply( lambda x : (x - x.mean()) / x.std()) # 用OneHot编码替换离散值 all_features = pd.get_dummies(all_features, dummy_na = True) print(all_features.shape) # 转化成torch.tensor类型 n_train = train_data.shape[0] train_features = torch.tensor(all_features[:n_train].values, dtype = torch.float32) test_features = torch.tensor(all_features[n_train:].values, dtype = torch.float32) train_labels = torch.tensor(train_data.SalePrice.values.reshape(-1,1), dtype = torch.float32) # 定义训练用的损失函数 loss = nn.MSELoss() # 输入特征数 in_features = train_features.shape[1] # 线性回归模型 def get_net(): net = nn.Sequential(nn.Linear(in_features, 1)) return net # y的值比较大,所以都先取一个log,缩小范围,再用均方根误差 def log_rmse(net, features, labels): # torch.clamp(input, min, max, out=None) → Tensor # 将输入input张量每个元素的夹紧到区间 [min,max],并返回结果到一个新张量。 clipped_preds = torch.clamp(net(features), 1, float('inf')) rmse = torch.sqrt(loss(torch.log(clipped_preds), torch.log(labels))) return rmse.item() # 训练函数 def train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size): # 数据迭代器,用于每次得到随机的一组batch train_iter = data.DataLoader(dataset = data.TensorDataset(train_features, train_labels), batch_size = batch_size, shuffle = True, num_workers = 4, drop_last = True) # 设置优化器, 这里用了Adam optimizer = torch.optim.Adam(net.parameters(), lr = learning_rate, weight_decay = weight_decay) # 保存每一轮迭代之后的损失 train_ls, test_ls = [], [] # num_epochs轮训练 for epoch in range(num_epochs): for X, y in train_iter: optimizer.zero_grad() l = loss(net(X), y) l.backward() optimizer.step() train_ls.append(log_rmse(net, train_features, train_labels)) if test_labels is not None: test_ls.append(log_rmse(net, test_features, test_labels)) return train_ls, test_ls # k折交叉验证,训练数据在第i折,X: 特征, y: 标签 def get_k_fold_data(k, i, X, y): # 要保证k>1 assert k > 1 fold_size = X.shape[0] // k X_train, y_train = None, None for j in range(k): # slice用于获取一个切片对象 https://m.runoob.com/python/python-func-slice.html idx = slice(j * fold_size, (j + 1) * fold_size) X_part, y_part = X[idx,:], y[idx] if j == i: X_valid, y_valid = X_part, y_part elif X_train is None: X_train, y_train = X_part, y_part else: X_train = torch.cat([X_train, X_part], 0) y_train = torch.cat([y_train, y_part], 0) return X_train, y_train, X_valid, y_valid # k折交叉验证 def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay, batch_size): # k折交叉验证的平均训练集损失和验证集损失 train_l_sum, valid_l_sum = 0, 0 for i in range(k): data = get_k_fold_data(k, i, X_train, y_train) net = get_net() # *data用于把data解包成X_train, y_train, X_test, y_test train_ls, valid_ls = train(net, *data, num_epochs, learning_rate, weight_decay, batch_size) train_l_sum += train_ls[-1] valid_l_sum += valid_ls[-1] if i == 0: plt.figure() plt.xlabel('epoch') plt.ylabel('rmse') plt.xlim([1, num_epochs]) plt.plot(list(range(1,num_epochs + 1)), train_ls, label = 'train') plt.yscale('log') plt.plot(list(range(1,num_epochs + 1)), valid_ls, label = 'valid') plt.legend() plt.show() print(f'fold {i+1}, train log rmse {float(train_ls[-1]):f}, valid log rmse {float(valid_ls[-1]):f}, ') # 取平均损失 return train_l_sum / k, valid_l_sum / k k, num_epochs, lr, weight_decay, batch_size = 5, 100, 5, 0, 64 train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr, weight_decay, batch_size) print(f'{k}-折验证:平均训练log rmse: {float(train_l):f}, 平均验证log rmse: {float(valid_l):f}')
这篇关于线性回归房价预测的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-23Springboot应用的多环境打包入门
- 2024-11-23Springboot应用的生产发布入门教程
- 2024-11-23Python编程入门指南
- 2024-11-23Java创业入门:从零开始的编程之旅
- 2024-11-23Java创业入门:新手必读的Java编程与创业指南
- 2024-11-23Java对接阿里云智能语音服务入门详解
- 2024-11-23Java对接阿里云智能语音服务入门教程
- 2024-11-23JAVA对接阿里云智能语音服务入门教程
- 2024-11-23Java副业入门:初学者的简单教程
- 2024-11-23JAVA副业入门:初学者的实战指南