【机械仿真】基于matlab水下机器人机械手系统仿真【含Matlab源码 1264期】
2021/8/29 22:06:20
本文主要是介绍【机械仿真】基于matlab水下机器人机械手系统仿真【含Matlab源码 1264期】,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
一、简介
理论知识参照:基于重心调节的水下机器人—机械手系统姿态控制技术研究
二、部分源代码
classdef UvmsDynamics properties uvms_kinematics; tau_c; end properties(Constant) %% Robot System Parameters % mass of link m0 = 60; m1 = 4.2; m2 = 1; m3 = 1; % inertia matrix of link I_0_0 = diag([3.368 3.553 6.244]); I_1_1 = diag([19.11*1e-3 15.56*1e-3 7.54*1e-3]); I_2_2 = diag([13.97*1e-3 24.66*1e-3 12.19*1e-3]); I_3_3 = diag([13.97*1e-3 24.66*1e-3 12.19*1e-3]); %% Gravitational Acceleration g_I = [0; 0; -9.81]; %% Hydrodynamic Effects % fluid density rho = 1000; % drag coefficients Cd0 = 0.47; % sphere Cd1 = 1.1; % cylinder Cd2 = 1.1; % cylinder Cd3 = 1.1; % cylinder end methods function obj = UvmsDynamics(uvms_kinematics) if nargin == 1 obj.uvms_kinematics = uvms_kinematics; obj.tau_c = zeros(9,1); else error('Not enough parameters'); end end %% Direct Dynamics function obj = DirectDynamics(obj, vf_I, af_I) [M, C, Fe] = obj.GetModelParameters(vf_I, af_I); obj.uvms_kinematics.dzeta = M\(obj.tau_c - C - Fe); end %% Model Parameters function [M, C, Fe] = GetModelParameters(obj, vf_I, af_I) % generalized velocity v = obj.uvms_kinematics.v; omega = obj.uvms_kinematics.omega; dq1 = obj.uvms_kinematics.dq(1); dq2 = obj.uvms_kinematics.dq(2); dq3 = obj.uvms_kinematics.dq(3); zeta = obj.uvms_kinematics.zeta; % rotation matrix R_0_I = obj.uvms_kinematics.get_R_0_I(); R_1_0 = obj.uvms_kinematics.get_R_1_0(); R_2_1 = obj.uvms_kinematics.get_R_2_1(); R_2_0 = obj.uvms_kinematics.get_R_2_0(); R_3_0 = obj.uvms_kinematics.get_R_3_0(); % coordinate origin [po_1_0, po_2_1, po_3_2] = obj.uvms_kinematics.GetCoordinateOrigin(); % position vector of center of mass [pc_0_0, pc_1_1, pc_2_2, pc_3_3] = obj.uvms_kinematics.GetCenterOfMass(); % distance vector between C.M. [dc_1_0, dc_2_0, dc_3_0] = obj.uvms_kinematics.GetDistanceBetweenCM(); % radius of vehicle r0 = (obj.uvms_kinematics.Lx*obj.uvms_kinematics.Ly*obj.uvms_kinematics.Lz/8)^(1/3); % volume of link [V0, V1, V2, V3] = obj.GetVolume(); % inertia matrix of link [I_1_0, I_2_0, I_3_0] = obj.GetInertiaMatrix(); % added mass matrix [Ia_0_0, Ia_1_0, Ia_2_0, Ia_3_0] = obj.GetAddedMassMatrix(); % gravitational acceleration g_0 = R_0_I'*obj.g_I; % fluid velocity & acceleration vf_0 = R_0_I'*vf_I; af_0 = R_0_I'*af_I; %% Coefficients of Derivative of Position Vector % dp A_dq1_1 = obj.S(obj.uvms_kinematics.z_1_0)*R_1_0*pc_1_1; A_dq1_2 = obj.S(obj.uvms_kinematics.z_1_0)*R_1_0*(R_2_1*pc_2_2 + po_2_1); A_dq2_2 = R_1_0*obj.S(obj.uvms_kinematics.y_2_1)*R_2_1*pc_2_2; A_dq1_3 = obj.S(obj.uvms_kinematics.z_1_0)*R_1_0*(R_2_1*(pc_3_3 + po_3_2) + po_2_1); A_dq2_3 = R_1_0*obj.S(obj.uvms_kinematics.y_2_1)*R_2_1*(pc_3_3 + po_3_2); A_dq3_3 = R_1_0*R_2_1*obj.uvms_kinematics.z_2_2; % ddp B_ddq1_1 = obj.S(obj.uvms_kinematics.z_1_0)*R_1_0*pc_1_1; B_dq1sqr_1 = obj.S(obj.uvms_kinematics.z_1_0)^2*R_1_0*pc_1_1; B_ddq1_2 = obj.S(obj.uvms_kinematics.z_1_0)*R_1_0*(R_2_1*pc_2_2 + po_2_1); B_ddq2_2 = R_1_0*obj.S(obj.uvms_kinematics.y_2_1)*R_2_1*pc_2_2; B_dq1sqr_2 = obj.S(obj.uvms_kinematics.z_1_0)^2*R_1_0*(R_2_1*pc_2_2 + po_2_1); B_dq2sqr_2 = R_1_0*obj.S(obj.uvms_kinematics.y_2_1)^2*R_2_1*pc_2_2; B_dq1dq2_2 = 2*obj.S(obj.uvms_kinematics.z_1_0)*R_1_0*obj.S(obj.uvms_kinematics.y_2_1)*R_2_1*pc_2_2; B_ddq1_3 = obj.S(obj.uvms_kinematics.z_1_0)*R_1_0*(R_2_1*(pc_3_3 + po_3_2) + po_2_1); B_ddq2_3 = R_1_0*obj.S(obj.uvms_kinematics.y_2_1)*R_2_1*(pc_3_3 + po_3_2); B_ddq3_3 = R_1_0*R_2_1*obj.uvms_kinematics.z_2_2; B_dq1sqr_3 = obj.S(obj.uvms_kinematics.z_1_0)^2*R_1_0*(R_2_1*(pc_3_3 + po_3_2) + po_2_1); B_dq2sqr_3 = R_1_0*obj.S(obj.uvms_kinematics.y_2_1)^2*R_2_1*(pc_3_3 + po_3_2); B_dq1dq2_3 = 2*obj.S(obj.uvms_kinematics.z_1_0)*R_1_0*obj.S(obj.uvms_kinematics.y_2_1)*R_2_1*(pc_3_3 + po_3_2); B_dq1dq3_3 = 2*obj.S(obj.uvms_kinematics.z_1_0)*R_1_0*R_2_1*obj.uvms_kinematics.z_2_2; B_dq2dq3_3 = 2*R_1_0*obj.S(obj.uvms_kinematics.y_2_1)*R_2_1*obj.uvms_kinematics.z_2_2; %% Jacobian Matrix % angular velocity J_omega_0 = [zeros(3,3) eye(3) zeros(3,3)]; J_omega_1 = [zeros(3,3) eye(3) obj.uvms_kinematics.z_1_0 zeros(3,2)]; J_omega_2 = [zeros(3,3) eye(3) obj.uvms_kinematics.z_1_0 R_1_0*obj.uvms_kinematics.y_2_1 zeros(3,1)]; J_omega_3 = J_omega_2; % linear velocity J_v_0 = [eye(3) zeros(3,3) zeros(3,3)]; J_v_1 = [eye(3) -obj.S(dc_1_0) A_dq1_1 zeros(3,2)]; J_v_2 = [eye(3) -obj.S(dc_2_0) A_dq1_2 A_dq2_2 zeros(3,1)]; J_v_3 = [eye(3) -obj.S(dc_3_0) A_dq1_3 A_dq2_3 A_dq3_3]; % angular acceleration J_alpha_dzeta_0 = [zeros(3,3) eye(3) zeros(3,3)]; J_alpha_dzeta_1 = [zeros(3,3) eye(3) obj.uvms_kinematics.z_1_0 zeros(3,2)]; J_alpha_dzeta_2 = [zeros(3,3) eye(3) obj.uvms_kinematics.z_1_0 R_1_0*obj.uvms_kinematics.y_2_1 zeros(3,1)]; J_alpha_dzeta_3 = J_alpha_dzeta_2; J_alpha_zeta_0 = zeros(3,9); J_alpha_zeta_1 = [zeros(3,3) -0.5*obj.S(obj.uvms_kinematics.z_1_0)*dq1 -0.5*obj.S(obj.uvms_kinematics.z_1_0)*omega zeros(3,2)]; J_alpha_zeta_2 = [zeros(3,3) -0.5*(obj.S(obj.uvms_kinematics.z_1_0)*dq1+obj.S(R_1_0*obj.uvms_kinematics.y_2_1)*dq2) ... -0.5*obj.S(obj.uvms_kinematics.z_1_0)*(omega-R_1_0*obj.uvms_kinematics.y_2_1*dq2) ... -0.5*(obj.S(R_1_0*obj.uvms_kinematics.y_2_1)*omega-obj.S(obj.uvms_kinematics.z_1_0)*R_1_0*obj.uvms_kinematics.y_2_1*dq1) zeros(3,1)]; J_alpha_zeta_3 = J_alpha_zeta_2; % linear acceleration J_a_dzeta_0 = [eye(3) zeros(3,3) zeros(3,3)]; J_a_dzeta_1 = [eye(3) -obj.S(dc_1_0) B_ddq1_1 zeros(3,2)]; J_a_dzeta_2 = [eye(3) -obj.S(dc_2_0) B_ddq1_2 B_ddq2_2 zeros(3,1)]; J_a_dzeta_3 = [eye(3) -obj.S(dc_3_0) B_ddq1_3 B_ddq2_3 B_ddq3_3]; J_a_zeta_0 = [0.5*obj.S(omega) -0.5*obj.S(v) zeros(3,3)]; J_a_zeta_1 = [0.5*obj.S(omega) -(0.5*obj.S(v)+obj.S(A_dq1_1)*dq1) ... -(obj.S(A_dq1_1)*omega-B_dq1sqr_1*dq1) zeros(3,2)]; J_a_zeta_2 = [0.5*obj.S(omega) -(0.5*obj.S(v)+obj.S(A_dq1_2)*dq1+obj.S(A_dq2_2)*dq2) ... -(obj.S(A_dq1_2)*omega-B_dq1sqr_2*dq1-0.5*B_dq1dq2_2*dq2) ... -(obj.S(A_dq2_2)*omega-B_dq2sqr_2*dq2-0.5*B_dq1dq2_2*dq1) zeros(3,1)]; J_a_zeta_3 = [0.5*obj.S(omega) -(0.5*obj.S(v)+obj.S(A_dq1_3)*dq1+obj.S(A_dq2_3)*dq2+obj.S(A_dq3_3)*dq3) ... -(obj.S(A_dq1_3)*omega-B_dq1sqr_3*dq1-0.5*B_dq1dq2_3*dq2-0.5*B_dq1dq3_3*dq3) ... -(obj.S(A_dq2_3)*omega-B_dq2sqr_3*dq2-0.5*B_dq1dq2_3*dq1-0.5*B_dq2dq3_3*dq3) ... -(obj.S(A_dq3_3)*omega-0.5*B_dq1dq3_3*dq1-0.5*B_dq2dq3_3*dq2)]; %% Model Parameters % inertia matrix (including added mass) M0 = [J_v_0; J_omega_0]'*([obj.m0*J_a_dzeta_0; obj.I_0_0*J_alpha_dzeta_0] + Ia_0_0*[J_a_dzeta_0; J_alpha_dzeta_0]); M1 = [J_v_1; J_omega_1]'*([obj.m1*J_a_dzeta_1; I_1_0*J_alpha_dzeta_1] + Ia_1_0*[J_a_dzeta_1; J_alpha_dzeta_1]); M2 = [J_v_2; J_omega_2]'*([obj.m2*J_a_dzeta_2; I_2_0*J_alpha_dzeta_2] + Ia_2_0*[J_a_dzeta_2; J_alpha_dzeta_2]); M3 = [J_v_3; J_omega_3]'*([obj.m3*J_a_dzeta_3; I_3_0*J_alpha_dzeta_3] + Ia_3_0*[J_a_dzeta_3; J_alpha_dzeta_3]); M = M0 + M1 + M2 + M3; % vector of Coriolis and centripetal terms (including added mass) C0 = [J_v_0; J_omega_0]'*([obj.m0*J_a_zeta_0; obj.I_0_0*J_alpha_zeta_0+obj.S(J_omega_0*zeta)*obj.I_0_0*J_omega_0]*zeta ... + Ia_0_0*[J_a_zeta_0*zeta-af_0-obj.S(J_omega_0*zeta)*(J_v_0*zeta-vf_0); J_alpha_zeta_0*zeta-obj.S(J_omega_0*zeta)*J_omega_0*zeta] ... + [obj.S(J_omega_0*zeta) zeros(3,3); obj.S(J_v_0*zeta-vf_0) obj.S(J_omega_0*zeta)]*Ia_0_0*[J_v_0*zeta-vf_0; J_omega_0*zeta]); C1 = [J_v_1; J_omega_1]'*([obj.m1*J_a_zeta_1; I_1_0*J_alpha_zeta_1+obj.S(J_omega_1*zeta)*I_1_0*J_omega_1]*zeta ... + Ia_1_0*[J_a_zeta_1*zeta-af_0-obj.S(J_omega_0*zeta)*(J_v_1*zeta-vf_0); J_alpha_zeta_1*zeta-obj.S(J_omega_0*zeta)*J_omega_1*zeta] ... + [obj.S(J_omega_1*zeta) zeros(3,3); obj.S(J_v_1*zeta-vf_0) obj.S(J_omega_1*zeta)]*Ia_1_0*[J_v_1*zeta-vf_0; J_omega_1*zeta]); C2 = [J_v_2; J_omega_2]'*([obj.m2*J_a_zeta_2; I_2_0*J_alpha_zeta_2+obj.S(J_omega_2*zeta)*I_2_0*J_omega_2]*zeta ... + Ia_2_0*[J_a_zeta_2*zeta-af_0-obj.S(J_omega_0*zeta)*(J_v_2*zeta-vf_0); J_alpha_zeta_2*zeta-obj.S(J_omega_0*zeta)*J_omega_2*zeta] ... + [obj.S(J_omega_2*zeta) zeros(3,3); obj.S(J_v_2*zeta-vf_0) obj.S(J_omega_2*zeta)]*Ia_2_0*[J_v_2*zeta-vf_0; J_omega_2*zeta]); C3 = [J_v_3; J_omega_3]'*([obj.m3*J_a_zeta_3; I_3_0*J_alpha_zeta_3+obj.S(J_omega_3*zeta)*I_3_0*J_omega_3]*zeta ... + Ia_3_0*[J_a_zeta_3*zeta-af_0-obj.S(J_omega_0*zeta)*(J_v_3*zeta-vf_0); J_alpha_zeta_3*zeta-obj.S(J_omega_0*zeta)*J_omega_3*zeta] ... + [obj.S(J_omega_3*zeta) zeros(3,3); obj.S(J_v_3*zeta-vf_0) obj.S(J_omega_3*zeta)]*Ia_3_0*[J_v_3*zeta-vf_0; J_omega_3*zeta]); C = C0 + C1 + C2 + C3; % vector of external forces (- Fg - Fb - Ff - Fd) vr_1_0_normal = J_v_1*zeta - vf_0 - dot(J_v_1*zeta-vf_0,R_1_0*obj.uvms_kinematics.z_1_1)*R_1_0*obj.uvms_kinematics.z_1_1; vr_2_0_normal = J_v_2*zeta - vf_0 - dot(J_v_2*zeta-vf_0,R_2_0*obj.uvms_kinematics.z_2_2)*R_2_0*obj.uvms_kinematics.z_2_2; vr_3_0_normal = J_v_3*zeta - vf_0 - dot(J_v_3*zeta-vf_0,R_3_0*obj.uvms_kinematics.z_3_3)*R_3_0*obj.uvms_kinematics.z_3_3; Fe0 = [J_v_0; J_omega_0]'*([-obj.m0*g_0+obj.rho*V0*(g_0-af_0); zeros(3,1)] ... + [pi/2*obj.rho*obj.Cd0*r0^2*norm(J_v_0*zeta-vf_0)*(J_v_0*zeta-vf_0); zeros(3,1)]); Fe1 = [J_v_1; J_omega_1]'*([-obj.m1*g_0+obj.rho*V1*(g_0-af_0); zeros(3,1)] ... + obj.rho*obj.Cd1*obj.uvms_kinematics.r1*norm(vr_1_0_normal)*... [obj.uvms_kinematics.L1*vr_1_0_normal; 1/2*obj.uvms_kinematics.L1^2*obj.S(R_1_0*obj.uvms_kinematics.z_1_1)*vr_1_0_normal]); Fe2 = [J_v_2; J_omega_2]'*([-obj.m2*g_0+obj.rho*V2*(g_0-af_0); zeros(3,1)] ... + obj.rho*obj.Cd2*obj.uvms_kinematics.r2*norm(vr_2_0_normal)*... [obj.uvms_kinematics.L2*vr_2_0_normal; 1/2*obj.uvms_kinematics.L2^2*obj.S(R_2_0*obj.uvms_kinematics.z_2_2)*vr_2_0_normal]); Fe3 = [J_v_3; J_omega_3]'*([-obj.m3*g_0+obj.rho*V3*(g_0-af_0); zeros(3,1)] ... + obj.rho*obj.Cd3*obj.uvms_kinematics.r3*norm(vr_3_0_normal)*... [obj.uvms_kinematics.L3*vr_3_0_normal; 1/2*obj.uvms_kinematics.L3^2*obj.S(R_3_0*obj.uvms_kinematics.z_3_3)*vr_3_0_normal]); Fe = Fe0 + Fe1 + Fe2 + Fe3; end %% Volume of Link (assume neutrally buoyant m = rho*V) function [V0, V1, V2, V3] = GetVolume(obj) % V0 = 4/3*pi*(obj.uvms_kinematics.Lx/2)*(obj.uvms_kinematics.Ly/2)*(obj.uvms_kinematics.Lz/2); % V1 = pi*obj.uvms_kinematics.r1^2*obj.uvms_kinematics.L1; % V2 = pi*obj.uvms_kinematics.r2^2*obj.uvms_kinematics.L2; % V3 = pi*obj.uvms_kinematics.r3^2*obj.uvms_kinematics.L3; V0 = obj.m0/obj.rho; V1 = obj.m1/obj.rho; V2 = obj.m2/obj.rho; V3 = obj.m3/obj.rho; end %% Inertia Matrix of Link % inertia matrix of link 1 2 3 expressed in frame 0 function [I_1_0, I_2_0, I_3_0] = GetInertiaMatrix(obj) R_1_0 = obj.uvms_kinematics.get_R_1_0(); R_2_0 = obj.uvms_kinematics.get_R_2_0(); R_3_0 = obj.uvms_kinematics.get_R_3_0(); I_1_0 = R_1_0*obj.I_1_1*R_1_0'; I_2_0 = R_2_0*obj.I_2_2*R_2_0'; I_3_0 = R_3_0*obj.I_3_3*R_3_0'; end %% Added Mass Matrix % added mass matrix of link 0 expressed in frame 0 function Ia_0_0 = get_Ia_0_0(obj) % semi-axis of vehicle (a > b) a = obj.uvms_kinematics.Lx/2; b = (obj.uvms_kinematics.Ly*obj.uvms_kinematics.Lz/4)^(1/2); e = 1 - (b/a)^2; m = 4/3*pi*obj.rho*a*b^2; alpha0 = 2*(1-e^2)/e^3 * (1/2*log((1+e)/(1-e)) - e); beta0 = 1/e^2 - (1-e^2)/(2*e^3) * log((1+e)/(1-e)); Ia_0_0 = zeros(6,6); Ia_0_0(1,1) = -alpha0/(2-alpha0)*m; Ia_0_0(2,2) = -beta0/(2-beta0)*m; Ia_0_0(3,3) = -beta0/(2-beta0)*m; Ia_0_0(4,4) = 0; Ia_0_0(5,5) = -1/5 * (b^2-a^2)^2*(alpha0-beta0) / (2*(b^2-a^2)+(b^2+a^2)*(beta0-alpha0)) * m; Ia_0_0(6,6) = -1/5 * (b^2-a^2)^2*(alpha0-beta0) / (2*(b^2-a^2)+(b^2+a^2)*(beta0-alpha0)) * m; end % added mass matrix of link 1 expressed in frame 1 function Ia_1_1 = get_Ia_1_1(obj) k1 = obj.rho*pi*obj.uvms_kinematics.r1^2*obj.uvms_kinematics.L1/4; Ia_1_1 = diag([k1 k1 0 k1*obj.uvms_kinematics.L1^2/3 k1*obj.uvms_kinematics.L1^2/3 0]); end % added mass matrix of link 2 expressed in frame 2 function Ia_2_2 = get_Ia_2_2(obj) k2 = obj.rho*pi*obj.uvms_kinematics.r2^2*obj.uvms_kinematics.L2/4; Ia_2_2 = diag([k2 k2 0 k2*obj.uvms_kinematics.L2^2/3 k2*obj.uvms_kinematics.L2^2/3 0]); end % added mass matrix of link 3 expressed in frame 3 function Ia_3_3 = get_Ia_3_3(obj) k3 = obj.rho*pi*obj.uvms_kinematics.r3^2*obj.uvms_kinematics.L3/4; Ia_3_3 = diag([k3 k3 0 k3*obj.uvms_kinematics.L3^2/3 k3*obj.uvms_kinematics.L3^2/3 0]); end % added mass matrix of link 0 1 2 3 expressed in frame 0 function [Ia_0_0, Ia_1_0, Ia_2_0, Ia_3_0] = GetAddedMassMatrix(obj) R_1_0 = obj.uvms_kinematics.get_R_1_0(); R_2_0 = obj.uvms_kinematics.get_R_2_0(); R_3_0 = obj.uvms_kinematics.get_R_3_0(); Ia_0_0 = obj.get_Ia_0_0(); Ia_1_1 = obj.get_Ia_1_1(); Ia_2_2 = obj.get_Ia_2_2(); Ia_3_3 = obj.get_Ia_3_3(); Ia_1_0 = zeros(6,6); Ia_1_0(1:3,1:3) = R_1_0*Ia_1_1(1:3,1:3)*R_1_0'; Ia_1_0(4:6,4:6) = R_1_0*Ia_1_1(4:6,4:6)*R_1_0'; Ia_2_0 = zeros(6,6); Ia_2_0(1:3,1:3) = R_2_0*Ia_2_2(1:3,1:3)*R_2_0'; Ia_2_0(4:6,4:6) = R_2_0*Ia_2_2(4:6,4:6)*R_2_0'; Ia_3_0 = zeros(6,6); Ia_3_0(1:3,1:3) = R_3_0*Ia_3_3(1:3,1:3)*R_3_0'; Ia_3_0(4:6,4:6) = R_3_0*Ia_3_3(4:6,4:6)*R_3_0'; end end methods(Static) % matrix operator performing cross between two vectors function out = S(x) out = [ 0 -x(3) x(2) x(3) 0 -x(1) -x(2) x(1) 0]; end end end
三、运行结果
四、备注
版本:2014a
这篇关于【机械仿真】基于matlab水下机器人机械手系统仿真【含Matlab源码 1264期】的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-17机器学习资料入门指南
- 2024-12-06如何用OpenShift流水线打造高效的机器学习运营体系(MLOps)
- 2024-12-06基于无监督机器学习算法的预测性维护讲解
- 2024-12-03【机器学习(六)】分类和回归任务-LightGBM算法-Sentosa_DSML社区版
- 2024-12-0210个必须使用的机器学习API,为高级分析助力
- 2024-12-01【机器学习(五)】分类和回归任务-AdaBoost算法-Sentosa_DSML社区版
- 2024-11-28【机器学习(四)】分类和回归任务-梯度提升决策树(GBDT)算法-Sentosa_DSML社区版
- 2024-11-26【机器学习(三)】分类和回归任务-随机森林(Random Forest,RF)算法-Sentosa_DSML社区版
- 2024-11-18机器学习与数据分析的区别
- 2024-10-28机器学习资料入门指南