paddle2使用DQN跑CartPole(详细解读)
2021/9/6 23:36:16
本文主要是介绍paddle2使用DQN跑CartPole(详细解读),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
1.Model
使用的是动态图版本的Paddle。所以用了Paddle.nn。
输入维度为obs_dim;输出维度为act_dim。中间隐藏层是100个神经元。第一层网络输出使用tanh激活函数;第二层网络输出使用softmax函数将数值转化为概率。
class CartpoleModel(parl.Model): def __init__(self, obs_dim, act_dim): super(CartpoleModel, self).__init__() self.fc1 = nn.Linear(obs_dim, 100) self.fc2 = nn.Linear(100, act_dim) def forward(self, x): out = paddle.tanh(self.fc1(x)) prob = F.softmax(self.fc2(out)) return prob
可以输出下列代码查看网络的结构:
import paddle import paddle.nn as nn import paddle.nn.functional as F import parl class CartpoleModel(parl.Model): def __init__(self, obs_dim, act_dim): super(CartpoleModel, self).__init__() self.fc1 = nn.Linear(obs_dim, 100) self.fc2 = nn.Linear(100, act_dim) def forward(self, x): out = paddle.tanh(self.fc1(x)) prob = F.softmax(self.fc2(out)) return prob model = CartpoleModel(4,2) paddle.summary(model,(1,1,4))#输入是(1,4)的矩阵
得到的结果是:
2.Agent
继承parl.Agent基类,从说明文档中可以知道,self.alg就等于self.algorithm。
sample()函数实现探索
predict()函数实现预测——用Q-learning(取max)
class CartpoleAgent(parl.Agent): def __init__(self, algorithm): super(CartpoleAgent, self).__init__(algorithm) def sample(self, obs): obs = paddle.to_tensor(obs, dtype='float32') prob = self.alg.predict(obs) prob = prob.numpy() act = np.random.choice(len(prob), 1, p=prob)[0] return act def predict(self, obs): obs = paddle.to_tensor(obs, dtype='float32') prob = self.alg.predict(obs) ##是由于继承了parl.agent这个基类,所以alg=algorithm act = prob.argmax().numpy()[0] return act def learn(self, obs, act, reward, next_obs, terminal): act = np.expand_dims(act, axis=-1) reward = np.expand_dims(reward, axis=-1) terminal = np.expand_dims(reward, axis=-1) obs = paddle.to_tensor(obs, dtype='float32') act = paddle.to_tensor(act, dtype='int32') reward = paddle.to_tensor(reward, dtype='float32') next_obs = paddle.to_tensor(next_obs, dtype='float32') terminal = paddle.to_tensor(terminal, dtype='float32') loss = self.alg.learn(obs, act, reward, next_obs, terminal) ##将数据送到了当前算法DQN的learn中 return loss.numpy()[0]
3.Train
rpm表示经验池
def run_episode(agent, env, rpm): obs_list, action_list, reward_list, next_obs_list, done_list = [], [], [], [], [] total_reward = 0 obs = env.reset() step = 0 while True: step += 1 action = agent.sample(obs) next_obs, reward, done, _ = env.step(action) rpm.append((obs, action, reward, next_obs, done)) # obs_list.append(obs) # action_list.append(action) # reward_list.append(reward) # next_obs_list.append(next_obs) # done_list.append(done) if (len(rpm) >MEMORY_WARMUP_SIZE) and (step % LEARN_FREQ == 0): (batch_obs, batch_action, batch_reward, batch_next_obs, batch_done) = rpm.sample(32) train_loss = agent.learn(batch_obs, batch_action, batch_reward, batch_next_obs, batch_done) ###在这里去学习就是agent.learm负责转换数据交给DQN.learn total_reward += reward obs = next_obs if done: break return total_reward
4.RelayMemory
就是为了实现DQN的经验回放。
其将系统探索环境得到的数据储存起来,然后随机采样样本更新深度神经网络的参数。
由于agent与环境交互得到的训练样本并不是独立同分布的,为了解决这一问题DQN引入了经验回放机制。利用一个回放以往经验信息的buffer,将过去的experience和目前的experience混合,降低了数据相关性。并且,经验回放还使得样本可重用,从而提高学习效率。
class ReplayMemory(object): def __init__(self, max_size): self.buffer = collections.deque(maxlen=max_size) def append(self, exp): self.buffer.append(exp) def sample(self, batch_size): mini_batch = random.sample(self.buffer, batch_size) obs_batch, action_batch, reward_batch, next_obs_batch, done_batch = [], [], [], [], [] for experience in mini_batch: s, a, r, s_p, done = experience obs_batch.append(s) action_batch.append(a) reward_batch.append(r) next_obs_batch.append(s_p) done_batch.append(done) return np.array(obs_batch).astype('float32'), \ np.array(action_batch).astype('float32'), np.array(reward_batch).astype('float32'), \ np.array(next_obs_batch).astype('float32'), np.array(done_batch).astype('float32') def __len__(self): return len(self.buffer)
5.总的代码
import os import gym import paddle import paddle.nn as nn import paddle.nn.functional as F import parl from parl.utils import logger import random import collections import numpy as np LEARN_FREQ = 5 # 训练频率,不需要每一个step都learn,攒一些新增经验后再learn,提高效率 MEMORY_SIZE = 20000 # replay memory的大小,越大越占用内存 MEMORY_WARMUP_SIZE = 200 # replay_memory 里需要预存一些经验数据,再从里面sample一个batch的经验让agent去learn BATCH_SIZE = 32 # 每次给agent learn的数据数量,从replay memory随机里sample一批数据出来 GAMMA = 0.99 # reward 的衰减因子,一般取 0.9 到 0.999 不等 LEARNING_RATE = 0.001 # 学习率 class ReplayMemory(object): def __init__(self, max_size): self.buffer = collections.deque(maxlen=max_size) def append(self, exp): self.buffer.append(exp) def sample(self, batch_size): mini_batch = random.sample(self.buffer, batch_size) obs_batch, action_batch, reward_batch, next_obs_batch, done_batch = [], [], [], [], [] for experience in mini_batch: s, a, r, s_p, done = experience obs_batch.append(s) action_batch.append(a) reward_batch.append(r) next_obs_batch.append(s_p) done_batch.append(done) return np.array(obs_batch).astype('float32'), \ np.array(action_batch).astype('float32'), np.array(reward_batch).astype('float32'), \ np.array(next_obs_batch).astype('float32'), np.array(done_batch).astype('float32') def __len__(self): return len(self.buffer) class CartpoleModel(parl.Model): def __init__(self, obs_dim, act_dim): super(CartpoleModel, self).__init__() self.fc1 = nn.Linear(obs_dim, 100) self.fc2 = nn.Linear(100, act_dim) def forward(self, x): out = paddle.tanh(self.fc1(x)) prob = F.softmax(self.fc2(out)) return prob ##输入是(1,4)的obs矩阵,输出是(1,2)的动作概率 class CartpoleAgent(parl.Agent): def __init__(self, algorithm): super(CartpoleAgent, self).__init__(algorithm) def sample(self, obs): obs = paddle.to_tensor(obs, dtype='float32') prob = self.alg.predict(obs) prob = prob.numpy() act = np.random.choice(len(prob), 1, p=prob)[0] return act def predict(self, obs): obs = paddle.to_tensor(obs, dtype='float32') prob = self.alg.predict(obs) ##是由于继承了parl.agent这个基类,所以alg=algorithm act = prob.argmax().numpy()[0] return act def learn(self, obs, act, reward, next_obs, terminal): act = np.expand_dims(act, axis=-1) reward = np.expand_dims(reward, axis=-1) terminal = np.expand_dims(reward, axis=-1) obs = paddle.to_tensor(obs, dtype='float32') act = paddle.to_tensor(act, dtype='int32') reward = paddle.to_tensor(reward, dtype='float32') next_obs = paddle.to_tensor(next_obs, dtype='float32') terminal = paddle.to_tensor(terminal, dtype='float32') loss = self.alg.learn(obs, act, reward, next_obs, terminal) ##将数据送到了当前算法的learn中 return loss.numpy()[0] def run_episode(agent, env, rpm): obs_list, action_list, reward_list, next_obs_list, done_list = [], [], [], [], [] total_reward = 0 obs = env.reset() step = 0 while True: step += 1 action = agent.sample(obs) next_obs, reward, done, _ = env.step(action) rpm.append((obs, action, reward, next_obs, done)) # obs_list.append(obs) # action_list.append(action) # reward_list.append(reward) # next_obs_list.append(next_obs) # done_list.append(done) if (len(rpm) >MEMORY_WARMUP_SIZE) and (step % LEARN_FREQ == 0): (batch_obs, batch_action, batch_reward, batch_next_obs, batch_done) = rpm.sample(32) train_loss = agent.learn(batch_obs, batch_action, batch_reward, batch_next_obs, batch_done) total_reward += reward obs = next_obs if done: break return total_reward # evaluate 5 episodes def evaluate(env, agent, render=False): eval_reward = [] for i in range(5): obs = env.reset() episode_reward = 0 while True: action = agent.predict(obs) # 预测动作,只选最优动作 obs, reward, done, _ = env.step(action) episode_reward += reward if render: env.render() if done: break eval_reward.append(episode_reward) return np.mean(eval_reward) def main(): env = gym.make('CartPole-v0') # env = env.unwrapped # Cancel the minimum score limit obs_dim = env.observation_space.shape[0] act_dim = env.action_space.n logger.info('obs_dim {}, act_dim {}'.format(obs_dim, act_dim)) rpm = ReplayMemory(MEMORY_SIZE) # build an agent model = CartpoleModel(obs_dim=obs_dim, act_dim=act_dim) alg = parl.algorithms.DQN(model, gamma=0.99, lr=1e-3) agent = CartpoleAgent(alg) ##加载 save_path = './dqn_model.ckpt' agent.restore(save_path) while len(rpm) < MEMORY_WARMUP_SIZE: run_episode(agent, env, rpm) max_episode = 2000 # start train episode = 0 while episode < max_episode: # 训练max_episode个回合,test部分不计算入episode数量 # train part for i in range(0, 50): total_reward = run_episode(agent, env, rpm) episode += 1 # test part eval_reward = evaluate(env, agent, render=True) # render=True 查看显示效果 logger.info('episode:{} Test reward:{}'.format( episode, eval_reward)) # 训练结束,保存模型 save_path = './dqn_model.ckpt' agent.save(save_path) if __name__ == '__main__': main()
6.结果
4000次
这篇关于paddle2使用DQN跑CartPole(详细解读)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-06PingCAP 连续两年入选 Gartner 云数据库管理系统魔力象限“荣誉提及”
- 2025-01-05Easysearch 可搜索快照功能,看这篇就够了
- 2025-01-04BOT+EPC模式在基础设施项目中的应用与优势
- 2025-01-03用LangChain构建会检索和搜索的智能聊天机器人指南
- 2025-01-03图像文字理解,OCR、大模型还是多模态模型?PalliGema2在QLoRA技术上的微调与应用
- 2025-01-03混合搜索:用LanceDB实现语义和关键词结合的搜索技术(应用于实际项目)
- 2025-01-03停止思考数据管道,开始构建数据平台:介绍Analytics Engineering Framework
- 2025-01-03如果 Azure-Samples/aks-store-demo 使用了 Score 会怎样?
- 2025-01-03Apache Flink概述:实时数据处理的利器
- 2025-01-01使用 SVN合并操作时,怎么解决冲突的情况?-icode9专业技术文章分享