【机器学习】实践——使用k近邻算法改进约会网站的配对效果
2021/10/11 17:44:33
本文主要是介绍【机器学习】实践——使用k近邻算法改进约会网站的配对效果,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
文章目录
目录
文章目录
背景
一、准备数据
二、分析数据:数据可视化
工具:matplotlib插件
三、 准备数据:数据归一化
四、测试算法:作为完整程序验证分类器
五、使用算法:构建完整可用系统
总结
背景
海伦女士一直使用在线约会网站寻找适合自己的约会对象。尽管约会网站会推荐不同的任选,但她并不是喜欢每一个人。经过一番总结,她发现自己交往过的人可以进行如下分类:
- 不喜欢的人
- 魅力一般的人
- 极具魅力的人
海伦收集约会数据已经有了一段时间,她把这些数据存放在文本文件datingTestSet.txt中,每个样本数据占据一行,总共有1000行。
datingTestSet.txt数据下载(数据来源于网络)
海伦收集的样本数据主要包含以下3种特征:
- 每年获得的飞行常客里程数
- 玩视频游戏所消耗时间百分比
- 每周消费的冰淇淋公升数(可能是海伦的个人喜好)
一、准备数据
打开txt文本文件,数据格式如图1.1所示。
图1.1 datingTestSet.txt
在将上述特征数据输入到分类器前,必须将待处理的数据的格式改变为分类器可以接收的格式。将数据分类两部分,即特征矩阵和对应的分类标签向量。在kNN02.py文件中创建名为file2matrix的函数,以此来处理输入格式问题。 将datingTestSet.txt放到与kNN02.py相同目录下,编写代码如下:
import numpy as np """ 函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力 Parameters: filename - 文件名 Returns: returnMat - 特征矩阵 classLabelVector - 分类Label向量 """ def file2matrix(filename): #打开文件 fr = open(filename) #读取文件所有内容 arrayOLines = fr.readlines() #得到文件行数 numberOfLines = len(arrayOLines) #返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列 returnMat = np.zeros((numberOfLines,3)) #返回的分类标签向量 classLabelVector = [] #行的索引值 index = 0 for line in arrayOLines: #s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ') line = line.strip() #使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。 listFromLine = line.split('\t') #将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵 returnMat[index,:] = listFromLine[0:3] #根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力 if listFromLine[-1] == 'didntLike': classLabelVector.append(1) elif listFromLine[-1] == 'smallDoses': classLabelVector.append(2) elif listFromLine[-1] == 'largeDoses': classLabelVector.append(3) index += 1 return returnMat, classLabelVector if __name__ == '__main__': #打开的文件名 filename = "datingTestSet.txt" #打开并处理数据 datingDataMat, datingLabels = file2matrix(filename) print(datingDataMat) print(datingLabels)
运行上述代码,结果如图1.2所示
图1.2
顺利导入数据,并对数据进行解析,格式化为分类器需要的数据格式。接着我们需要了解数据的真正含义。可以通过友好、直观的图形化的方式观察数据。
二、分析数据:数据可视化
工具:matplotlib插件
在kNN_test02.py文件中编写名为showdatas的函数,用来将数据可视化,代码如下:
from matplotlib.font_manager import FontProperties import matplotlib.lines as mlines import matplotlib.pyplot as plt import numpy as np def file2matrix(filename): #打开文件 fr = open(filename) #读取文件所有内容 arrayOLines = fr.readlines() #得到文件行数 numberOfLines = len(arrayOLines) #返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列 returnMat = np.zeros((numberOfLines,3)) #返回的分类标签向量 classLabelVector = [] #行的索引值 index = 0 for line in arrayOLines: #s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ') line = line.strip() #使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。 listFromLine = line.split('\t') #将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵 returnMat[index,:] = listFromLine[0:3] #根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力 if listFromLine[-1] == 'didntLike': classLabelVector.append(1) elif listFromLine[-1] == 'smallDoses': classLabelVector.append(2) elif listFromLine[-1] == 'largeDoses': classLabelVector.append(3) index += 1 return returnMat, classLabelVector def showdatas(datingDataMat, datingLabels): #设置汉字格式 font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14) #将fig画布分隔成1行1列,不共享x轴和y轴,fig画布的大小为(13,8) #当nrow=2,nclos=2时,代表fig画布被分为四个区域,axs[0][0]表示第一行第一个区域 fig, axs = plt.subplots(nrows=2, ncols=2,sharex=False, sharey=False, figsize=(13,8)) numberOfLabels = len(datingLabels) LabelsColors = [] for i in datingLabels: if i == 1: LabelsColors.append('black') if i == 2: LabelsColors.append('orange') if i == 3: LabelsColors.append('red') #画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第二列(玩游戏)数据画散点数据,散点大小为15,透明度为0.5 axs[0][0].scatter(x=datingDataMat[:,0], y=datingDataMat[:,1], color=LabelsColors,s=15, alpha=.5) #设置标题,x轴label,y轴label axs0_title_text = axs[0][0].set_title(u'每年获得的飞行常客里程数与玩视频游戏所消耗时间占比',FontProperties=font) axs0_xlabel_text = axs[0][0].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font) axs0_ylabel_text = axs[0][0].set_ylabel(u'玩视频游戏所消耗时间占',FontProperties=font) plt.setp(axs0_title_text, size=9, weight='bold', color='red') plt.setp(axs0_xlabel_text, size=7, weight='bold', color='black') plt.setp(axs0_ylabel_text, size=7, weight='bold', color='black') #画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5 axs[0][1].scatter(x=datingDataMat[:,0], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5) #设置标题,x轴label,y轴label axs1_title_text = axs[0][1].set_title(u'每年获得的飞行常客里程数与每周消费的冰激淋公升数',FontProperties=font) axs1_xlabel_text = axs[0][1].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font) axs1_ylabel_text = axs[0][1].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font) plt.setp(axs1_title_text, size=9, weight='bold', color='red') plt.setp(axs1_xlabel_text, size=7, weight='bold', color='black') plt.setp(axs1_ylabel_text, size=7, weight='bold', color='black') #画出散点图,以datingDataMat矩阵的第二(玩游戏)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5 axs[1][0].scatter(x=datingDataMat[:,1], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5) #设置标题,x轴label,y轴label axs2_title_text = axs[1][0].set_title(u'玩视频游戏所消耗时间占比与每周消费的冰激淋公升数',FontProperties=font) axs2_xlabel_text = axs[1][0].set_xlabel(u'玩视频游戏所消耗时间占比',FontProperties=font) axs2_ylabel_text = axs[1][0].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font) plt.setp(axs2_title_text, size=9, weight='bold', color='red') plt.setp(axs2_xlabel_text, size=7, weight='bold', color='black') plt.setp(axs2_ylabel_text, size=7, weight='bold', color='black') #设置图例 didntLike = mlines.Line2D([], [], color='black', marker='.', markersize=6, label='didntLike') smallDoses = mlines.Line2D([], [], color='orange', marker='.', markersize=6, label='smallDoses') largeDoses = mlines.Line2D([], [], color='red', marker='.', markersize=6, label='largeDoses') #添加图例 axs[0][0].legend(handles=[didntLike,smallDoses,largeDoses]) axs[0][1].legend(handles=[didntLike,smallDoses,largeDoses]) axs[1][0].legend(handles=[didntLike,smallDoses,largeDoses]) #显示图片 plt.show() if __name__ == '__main__': #打开的文件名 filename = "datingTestSet.txt" #打开并处理数据 datingDataMat, datingLabels = file2matrix(filename) showdatas(datingDataMat, datingLabels)运行后可视化结果如图2.2所示
图2.1
分析:通过数据可以很直观的发现数据的规律,比如以玩游戏所消耗时间占比与每年获得的飞行常客里程数,在这二维的特征信息中特征最集中,所以海伦喜欢的约会对象每年获得的飞行常客里程数在40000公里左右,同时也要玩视频游戏,并且占一定时间比例。这个约会对象不仅能到处飞,而且不能经常坐飞机,疲于奔波,满世界飞,又能经常玩游戏的男人显然是有生活质量,并且生活悠闲的人。而每周消费的冰淇淋公升数在图像分析中似乎决定性作用并不大。
三、 准备数据:数据归一化
图3.1 约会网站原始数据改进之后的样本数据
计算样本3和样本4之间的距离,可以使用欧拉公式计算。
图3.2 计算公式
我们很容易发现,上面方程中数字差值最大的属性对计算结果的影响最大,也就是说,每年获取的飞行常客里程数对于计算结果的影响将远远大于表2.1中其他两个特征-玩视频游戏所耗时间占比和每周消费冰淇淋公斤数的影响。而产生这种现象的唯一原因,仅仅是因为飞行常客里程数远大于其他特征值。但海伦认为这三种特征是同等重要的,因此作为三个等权重的特征之一,飞行常客里程数并不应该如此严重地影响到计算结果。
在处理这种不同取值范围的特征值时,我们通常采用的方法是将数值归一化,如将取值范围处理为0到1或者-1到1之间。下面的公式可以将任意取值范围的特征值转化为0到1区间内的值:
newValue = (oldValue - min) / (max - min)
其中min和max分别是数据集中的最小特征值和最大特征值。虽然改变数值取值范围增加了分类器的复杂度,但为了得到准确结果,我们必须这样做。在kNN02.py文件中编写名为autoNorm的函数,用该函数自动将数据归一化。代码如下:def file2matrix(filename): #打开文件 fr = open(filename) #读取文件所有内容 arrayOLines = fr.readlines() #得到文件行数 numberOfLines = len(arrayOLines) #返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列 returnMat = np.zeros((numberOfLines,3)) #返回的分类标签向量 classLabelVector = [] #行的索引值 index = 0 for line in arrayOLines: #s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ') line = line.strip() #使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。 listFromLine = line.split('\t') #将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵 returnMat[index,:] = listFromLine[0:3] #根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力 if listFromLine[-1] == 'didntLike': classLabelVector.append(1) elif listFromLine[-1] == 'smallDoses': classLabelVector.append(2) elif listFromLine[-1] == 'largeDoses': classLabelVector.append(3) index += 1 return returnMat, classLabelVector def autoNorm(dataSet): #获得数据的最小值 minVals = dataSet.min(0) maxVals = dataSet.max(0) #最大值和最小值的范围 ranges = maxVals - minVals #shape(dataSet)返回dataSet的矩阵行列数 normDataSet = np.zeros(np.shape(dataSet)) #返回dataSet的行数 m = dataSet.shape[0] #原始值减去最小值 normDataSet = dataSet - np.tile(minVals, (m, 1)) #除以最大和最小值的差,得到归一化数据 normDataSet = normDataSet / np.tile(ranges, (m, 1)) #返回归一化数据结果,数据范围,最小值 return normDataSet, ranges, minVals if __name__ == '__main__': #打开的文件名 filename = "datingTestSet.txt" #打开并处理数据 datingDataMat, datingLabels = file2matrix(filename) normDataSet, ranges, minVals = autoNorm(datingDataMat) print(normDataSet) print(ranges) print(minVals)运行结果: 图3.3 归一化函数运行结果 此时,已经顺利将数据归一化了,并且求出了数据的取值范围和数据的最小值,这两个值是在分类的时候需要用到的,直接先求解出来,也算是对数据预处理。
四、测试算法:作为完整程序验证分类器
机器学习算法一个很重要的工作就是评估算法的正确率,通常我们只提供已有数据的90%作为训练样本来训练分类器,而使用其余的10%数据去测试分类器,检测分类器的正确率。需要注意的是,10%的测试数据应该是随机选择的,由于海伦提供的数据并没有按照特定目的来排序,所以我么你可以随意选择10%数据而不影响其随机性。
为了测试分类器效果,在kNN02.py文件中创建函数datingClassTest,编写代码如下:
# -*- coding: UTF-8 -*- import numpy as np import operator def classify0(inX, dataSet, labels, k): #numpy函数shape[0]返回dataSet的行数 dataSetSize = dataSet.shape[0] #在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向) diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet #二维特征相减后平方 sqDiffMat = diffMat**2 #sum()所有元素相加,sum(0)列相加,sum(1)行相加 sqDistances = sqDiffMat.sum(axis=1) #开方,计算出距离 distances = sqDistances**0.5 #返回distances中元素从小到大排序后的索引值 sortedDistIndices = distances.argsort() #定一个记录类别次数的字典 classCount = {} for i in range(k): #取出前k个元素的类别 voteIlabel = labels[sortedDistIndices[i]] #dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。 #计算类别次数 classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 #python3中用items()替换python2中的iteritems() #key=operator.itemgetter(1)根据字典的值进行排序 #key=operator.itemgetter(0)根据字典的键进行排序 #reverse降序排序字典 sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True) #返回次数最多的类别,即所要分类的类别 return sortedClassCount[0][0] def datingClassTest(): #打开的文件名 filename = "datingTestSet.txt" #将返回的特征矩阵和分类向量分别存储到datingDataMat和datingLabels中 datingDataMat, datingLabels = file2matrix(filename) #取所有数据的百分之十 hoRatio = 0.10 #数据归一化,返回归一化后的矩阵,数据范围,数据最小值 normMat, ranges, minVals = autoNorm(datingDataMat) #获得normMat的行数 m = normMat.shape[0] #百分之十的测试数据的个数 numTestVecs = int(m * hoRatio) #分类错误计数 errorCount = 0.0 for i in range(numTestVecs): #前numTestVecs个数据作为测试集,后m-numTestVecs个数据作为训练集 classifierResult = classify0(normMat[i,:], normMat[numTestVecs:m,:], datingLabels[numTestVecs:m], 4) print("分类结果:%d\t真实类别:%d" % (classifierResult, datingLabels[i])) if classifierResult != datingLabels[i]: errorCount += 1.0 print("错误率:%f%%" %(errorCount/float(numTestVecs)*100)) if __name__ == '__main__': datingClassTest()
图4.1 验证分类器结果
从图3.4验证分类器结果中可以看出,错误率是4%。我们可以改变函数datingClassTest内变量hoRatio和分类器k的值,检测错误率是否随着变量值的变化而增加。依赖于分类算法、数据集和程序设置,分类器的输出结果可能有很大的不同。
五、使用算法:构建完整可用系统
我们可以给海伦一个小段程序,通过该程序海伦会在约会网站上找到某个人并输入他的信息。程序会给出她对男方喜欢程度的预测值。
在kNN02.py文件中创建函数classifyPerson,代码如下:
def classifyPerson(): #输出结果 resultList = ['讨厌','有些喜欢','非常喜欢'] #三维特征用户输入 precentTats = float(input("玩视频游戏所耗时间百分比:")) ffMiles = float(input("每年获得的飞行常客里程数:")) iceCream = float(input("每周消费的冰激淋公升数:")) #打开的文件名 filename = "datingTestSet.txt" #打开并处理数据 datingDataMat, datingLabels = file2matrix(filename) #训练集归一化 normMat, ranges, minVals = autoNorm(datingDataMat) #生成NumPy数组,测试集 inArr = np.array([precentTats, ffMiles, iceCream]) #测试集归一化 norminArr = (inArr - minVals) / ranges #返回分类结果 classifierResult = classify0(norminArr, normMat, datingLabels, 3) #打印结果 print("你可能%s这个人" % (resultList[classifierResult-1])) if __name__ == '__main__': classifyPerson()
运行程序,并输入数据(30,60000,5),预测结果是”你可能讨厌这个人”,
图5.1 运行结果
总结
通过这次约会网站匹配对象实验,我对k近邻算法有了更深刻的理解,也对python语言和pycharm环境的使用更加熟练。同时,我的程序错误率是4%,不能达到课本上的2.4%,希望在接下来的学习我能够提高动手能力,争取降低错误率。
这篇关于【机器学习】实践——使用k近邻算法改进约会网站的配对效果的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-17机器学习资料入门指南
- 2024-12-06如何用OpenShift流水线打造高效的机器学习运营体系(MLOps)
- 2024-12-06基于无监督机器学习算法的预测性维护讲解
- 2024-12-03【机器学习(六)】分类和回归任务-LightGBM算法-Sentosa_DSML社区版
- 2024-12-0210个必须使用的机器学习API,为高级分析助力
- 2024-12-01【机器学习(五)】分类和回归任务-AdaBoost算法-Sentosa_DSML社区版
- 2024-11-28【机器学习(四)】分类和回归任务-梯度提升决策树(GBDT)算法-Sentosa_DSML社区版
- 2024-11-26【机器学习(三)】分类和回归任务-随机森林(Random Forest,RF)算法-Sentosa_DSML社区版
- 2024-11-18机器学习与数据分析的区别
- 2024-10-28机器学习资料入门指南