Python实现数据透视表
2021/10/27 22:10:28
本文主要是介绍Python实现数据透视表,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
用Python里的Pandas可以实现,虽然感觉Excel更方便
1.groupby + agg
不够直观,不好看
对贷款年份,贷款种类创建数据透视
train_data.groupby(['year_of_loan', 'class']).agg(d_roat =('isDefault', 'mean'))
2. crosstab
pandas.crosstab(index, columns,values, rownames=None, colnames, aggfunc, margins, margins_name, dropna, normalize)
主要用到的参数:
index:选哪个变量做数据透视表的行
columns:选哪个变量做数据透视表的列
values:要聚合的值
aggfunc:使用的聚合函数
margins:是否添加汇总列/行
margins_name:汇总行/列的名字
例子
对贷款年份,贷款种类创建数据透视
pd.crosstab(train_data['year_of_loan'], train_data['class'], train_data['loan_id'], aggfunc='count',margins = True, margins_name = '合计')
可以直接看出交叉组合之后违约比例
pd.crosstab(train_data['year_of_loan'], train_data['class'], train_data['isDefault'], aggfunc='mean')
3.groupby + pivot
train_data.groupby(['year_of_loan', 'class'], as_index = False)['isDefault'].mean().pivot('year_of_loan', 'class', 'isDefault')
pivot_table
pandas.pivot_table(data, values, index, columns, aggfunc, fill_value, margins, dropna, margins_name, observed, sort)
常用参数与crosstab一致
例子
实现同样的数据透视表
pd.pivot_table(train_data[['year_of_loan', 'class', 'isDefault']], values='isDefault', index=['year_of_loan'], columns=['class'], aggfunc='count', margins = True, margins_name = '合计')
pd.pivot_table(train_data[['year_of_loan', 'class', 'isDefault']], values='isDefault', index=['year_of_loan'], columns=['class'], aggfunc='mean')
这篇关于Python实现数据透视表的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-21Python编程基础教程
- 2024-11-20Python编程基础与实践
- 2024-11-20Python编程基础与高级应用
- 2024-11-19Python 基础编程教程
- 2024-11-19Python基础入门教程
- 2024-11-17在FastAPI项目中添加一个生产级别的数据库——本地环境搭建指南
- 2024-11-16`PyMuPDF4LLM`:提取PDF数据的神器
- 2024-11-16四种数据科学Web界面框架快速对比:Rio、Reflex、Streamlit和Plotly Dash
- 2024-11-14获取参数学习:Python编程入门教程
- 2024-11-14Python编程基础入门