机器学习算法(一元线性回归)
2021/11/12 22:14:52
本文主要是介绍机器学习算法(一元线性回归),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
import matplotlib.pyplot as plt import numpy as np import pandas as pd from sklearn import datasets, linear_model # 读取所需数据 def get_data(file_name): data = pd.read_csv(file_name) # 获取Dataframe对象 X_parameter = [] Y_parameter = [] for single_square_feet, single_price_value in zip(data['square_feet'], data['price']): X_parameter.append([float(single_square_feet)]) #加中括号变成二维数组,x,以及用这个x预测的y值 Y_parameter.append(float(single_price_value)) return X_parameter, Y_parameter # 拟合线性模型 def linear_model_main(X_parameters, Y_parameters, predict_value): regr = linear_model.LogisticRegression() # 创建线性回归对象 regr.fit(X_parameters, Y_parameters) # 拟合 predict_outcome = regr.predict(predict_value) # 调用线性回归对象的预测方法 predictions = {} # 定义一个空字典,存储拟合得到的斜率和截距,预测值 predictions['intercept'] = regr.intercept_ predictions['coefficient'] = regr.coef_ predictions['predicted_value'] = predict_outcome return predictions # 显示拟合线性模型的结果 def show_linear_line(X_parameters, Y_parameters): regr = linear_model.LinearRegression() regr.fit(X_parameters, Y_parameters) plt.scatter(X_parameters, Y_parameters, color='blue') plt.plot(X_parameters, regr.predict(X_parameters), color='red', linewidth=4) # plt.xticks(()) # 参数是xtick位置的列表。和一个可选参数。如果将一个空列表作为参数传递,则它将删除所有xticks # plt.yticks(()) plt.show() X, Y = get_data('input_data.csv') # 传入所需数据 predictvalue = 700 result = linear_model_main(X, Y, predictvalue) # 结果字典 print("Intercept value:", result['intercept']) print("Coefficient:", result['coefficient']) print("Predicted value:", result['predicted_value']) show_linear_line(X, Y)
这篇关于机器学习算法(一元线性回归)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-17机器学习资料入门指南
- 2024-12-06如何用OpenShift流水线打造高效的机器学习运营体系(MLOps)
- 2024-12-06基于无监督机器学习算法的预测性维护讲解
- 2024-12-03【机器学习(六)】分类和回归任务-LightGBM算法-Sentosa_DSML社区版
- 2024-12-0210个必须使用的机器学习API,为高级分析助力
- 2024-12-01【机器学习(五)】分类和回归任务-AdaBoost算法-Sentosa_DSML社区版
- 2024-11-28【机器学习(四)】分类和回归任务-梯度提升决策树(GBDT)算法-Sentosa_DSML社区版
- 2024-11-26【机器学习(三)】分类和回归任务-随机森林(Random Forest,RF)算法-Sentosa_DSML社区版
- 2024-11-18机器学习与数据分析的区别
- 2024-10-28机器学习资料入门指南