三层前向神经网络反向传播 python实现
2021/11/18 14:39:43
本文主要是介绍三层前向神经网络反向传播 python实现,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
激励函数 隐含层tanh;输出层sigmoid;
目标函数 MSE准则
训练集
代码思路
readData.py 从txt中读取数据集,并把标签转化成one-hot矩阵
import pandas as pd import numpy as np class readData(object): def __init__(self, io='../数据集.xlsx'): """ io:数据集路径 excel格式 """ df = pd.read_excel(io='../数据集.xlsx') all_data = df.values # 所有数据 特征+标签 permutation = np.random.permutation(all_data.shape[0]) all_data = all_data[permutation, :] self.data = all_data[:, 0:3] # 提取特征集 self.label = all_data[:, 3] # 提取标签 def get_train_data(self): train_data = np.hstack((np.ones((self.data.shape[0], 1)), self.data)) # 每个样本的特征最前面都插入1维阈值 1(偏置) train_label = self.label.reshape(-1).astype(int) - 1 # 类别标签从1-3变为0-2,便于转成onw-hot矩阵进行计算 # print(train_label) train_y = np.eye(3)[train_label] # one-hot向量矩阵 return train_data, train_y
stimulateFunc.py 激励函数及其导数
import numpy as np class stimulateFunc(object): def __init__(self): """初始化函数 没有任何操作""" pass def sigmoid(self, x): return 1 / (1 + np.exp(-x)) def sigmoid_derivative(self, x): return self.sigmoid(x) * (1 - self.sigmoid(x)) def tanh(self, x): return np.tanh(x) def tanh_derivative(self, x): return 1 - np.power(self.tanh(x), 2)
inputLayer.py 输入层
import numpy as np from stimulateFunc import stimulateFunc class inputLayer(object): def __init__(self, input_num=4, hidden_num=3, learning_rate=0.1): """ 搭建神经网络输入层到隐含层的映射 采用tanh函数激励 需要参数: X:输入的特征矩阵 input_num:输入数据维度 hidden_num:隐含层节点数 learning_rate:学习率/更新步长 W_ih:权重矩阵 Y_h:激活后输出到隐含层的特征矩阵 """ self.X = [] # 输入矩阵 self.input_num = input_num # 需要注意,输入要多一个偏置项 self.hidden_num = hidden_num self.learning_rate = learning_rate self.W_ih = np.random.rand(self.input_num, self.hidden_num) # 随机初始化权重 [0,1)之间 包括偏置的权重 self.net = [] # 输入矩阵*当前权重所得节点 self.Y_h = [] def forward(self, X): # X:输入矩阵(特征+1维偏置) """前向传播""" self.X = X self.net = np.dot(self.X, self.W_ih) # 乘上权重矩阵 self.Y_h = stimulateFunc().tanh(self.net) # 激励结果 return self.Y_h # 返回激励结果 def backward(self, delta): """反向传播""" """delta:后一层收集的误差""" temp = stimulateFunc().tanh_derivative(self.net) d_W_ih = np.dot(self.X.T, (delta*temp)) # 计算更新量 self.W_ih = self.W_ih + self.learning_rate * d_W_ih # 更新权重 return self.W_ih # 返回更新后的权重
hiddenLayer.py 隐含层
import numpy as np from stimulateFunc import stimulateFunc class hiddenLayer(object): def __init__(self, hidden_num=3, output_num=3, learning_rate=0.1): """ 搭建神经网络隐含层到输出层的映射 采用sigmoid函数激励 需要参数: Y:输入层传进来的特征矩阵 hidden_num:隐含层节点数 output_num:输出层节点数 learning_rate:学习率/更新步长 W_ho:权重矩阵 Z_o:输出到输出层的特征矩阵 """ self.hidden_num = hidden_num # 获得隐含层节点数 self.output_num = output_num self.learning_rate = learning_rate self.W_ho = np.random.rand(self.hidden_num, self.output_num) # 随机初始化权重 [0,1)之间 包括偏置的权重 self.net = [] self.Z_o = [] def forward(self, Y): # Y:上一层输入矩阵 """前向传播""" self.Y = Y self.net = np.dot(Y, self.W_ho) # 乘上权重矩阵 # print(temp) self.Z_o = stimulateFunc().sigmoid(self.net) # 激励结果 return self.Z_o # 返回激励结果 def backward(self, delta): """反向传播""" """delta:后一层收集的误差""" temp = stimulateFunc().sigmoid_derivative(self.net) delta_ho = delta * temp d_W_ho = np.dot(self.Y.T, delta_ho) # 计算更新量 self.W_ho = self.W_ho + self.learning_rate * d_W_ho # 更新权重 back_delta = np.dot(delta_ho, self.W_ho.T) return back_delta # 返回传到前一层的误差
BP_model.py 三层前向神经网络
超参数 epoch:迭代次数
learning_rate:学习率
hidden_num:隐含层节点
batch_size:批量更新大小
import numpy as np from inputLayer import inputLayer from hiddenLayer import hiddenLayer class bp_model(object): def __init__(self, X, y, epoch, learning_rate, batch_size, hidden_num): """ X:特征 y:标签(one-hot矩阵 epoch:迭代次数 learning_rate:更新步长/学习率 batch_size:批量更新数。为1则为单样本更新 hidden_num:隐含层节点数 """ self.X = X self.y = y self.epoch = epoch self.learning_rate = learning_rate self.batch_size = batch_size self.hidden_num = hidden_num self.input_num = X.shape[1] self.output_num = y.shape[1] def train(self): X_ = self.X Y_ = self.y loss_ = [] acc_ = [] epoch_ = 0 bp = BP_once(self.input_num, self.output_num, self.hidden_num, self.learning_rate) # 搭建神经网络 for i in range(self.epoch): for j in range(X_.shape[0] // self.batch_size): # 批量更新大小 x_ = X_[j * self.batch_size:(j + 1) * self.batch_size, :] y_ = Y_[j * self.batch_size:(j + 1) * self.batch_size, :] bp.training(x_, y_) acc = bp.acc(X_, Y_) loss = bp.MSEloss(X_, Y_) acc_.append(acc) loss_.append(loss) # if i % 100 == 0: # print('epoch=', i) # print('loss = %.10f, acc=%.1f' % (loss, acc)) if acc == 100: epoch_ = i # 记录下训练完全正确的迭代次数 if loss <= 0.01: print('>>>>>loss has already down to 0.01! Training Terminated!<<<<<') break return loss_, acc_, epoch_ class BP_once(object): def __init__(self, input_num=4, output_num=3, hidden_num=3, learning_rate=0.01): """ 构造三层前向神经网络 进行一次反向传播更新权重 误差准则 MSE 所需参数: iteration_num:迭代次数 learning_rate:更新步长/学习率 hidden_num:隐含层节点数 """ self.input_num = input_num self.hidden_num = hidden_num self.output_num = output_num self.learning_rate = learning_rate # 搭建神经网络 self.input = inputLayer(self.input_num, self.hidden_num, self.learning_rate) self.hidden = hiddenLayer(self.hidden_num, self.output_num, self.learning_rate) # 误差函数 MSE准则 def MSEloss(self, X, Y): return np.sum(np.power(self.predict(X) - Y, 2) / 2) # 预测准确率 def acc(self, X, Y): count = (np.sum(np.argmax(Y, axis=1) == np.argmax(self.predict(X), axis=1))) return count / X.shape[0] * 100 # 前向传播获得预测情况 def predict(self, X): x = X y = self.input.forward(x) z = self.hidden.forward(y) return z # 反向传播更新权重 def update(self, X, y): z = self.predict(X) # 一次前向传播 delta = y - z # 计算最后一层误差 delta = self.hidden.backward(delta) # 向前传播误差 self.input.backward(delta) return 1 def training(self, X, y): """进行一次前向-反向传播""" # self.model_builder() self.update(X, y) # loss = self.MSEloss() # acc = self.acc() return 1
main.py 主函数,绘制acc和loss图像
import numpy as np from BP_model import bp_model from readData import readData import time import matplotlib as mpl import matplotlib.pyplot as plt if __name__ == '__main__': np.random.seed(10) data = readData() X, y = data.get_train_data() hidden_num = [3, 5, 10, 20] batch_size = [1, 5, 10] learning_rate = [0.01, 0.05, 0.1, 1] running_time = [] stop_epoch = [] each_loss = [] each_acc = [] # """开始计算运行时间""" # for i in range(len(learning_rate)): # # start = time.time() # my_model = bp_model(X, y, epoch=5000, batch_size=batch_size[0], # learning_rate=learning_rate[i], hidden_num=hidden_num[2]) # loss, acc, full_epoch = my_model.train() # each_acc.append(acc[-1]) # each_loss.append(loss[-1]) # end = time.time() # running_time.append(end - start) # stop_epoch.append(full_epoch) # # print('time cost : %.5f sec' % running_time[i]) # # print('epoch reach to %d, acc=100' % stop_epoch[i]) # # print('time cost : ', running_time) # print('stop_epoch: ', stop_epoch) # print('loss: ', each_loss) # print('acc: ', each_acc) # # print(stop_epoch) """分别绘制acc和loss图像""" my_model = bp_model(X, y, epoch=5000, batch_size=batch_size[1], learning_rate=learning_rate[2], hidden_num=hidden_num[2]) loss, acc, full_epoch = my_model.train() plt.figure(1) plt.plot(loss) plt.grid(True) # 增加格点 plt.axis('tight') # 坐标轴适应数据量 axis 设置坐标轴 plt.xlabel("epoch") # x轴label plt.title('LOSS') # plt.scatter(x=0:len(last_loss), y=last_loss, color='red') plt.figure(2) plt.plot(acc) plt.grid(True) # 增加格点 plt.axis('tight') # 坐标轴适应数据量 axis 设置坐标轴 plt.title('ACC') plt.xlabel("epoch") # x轴label plt.show()
这篇关于三层前向神经网络反向传播 python实现的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-03用FastAPI掌握Python异步IO:轻松实现高并发网络请求处理
- 2025-01-02封装学习:Python面向对象编程基础教程
- 2024-12-28Python编程基础教程
- 2024-12-27Python编程入门指南
- 2024-12-27Python编程基础
- 2024-12-27Python编程基础教程
- 2024-12-27Python编程基础指南
- 2024-12-24Python编程入门指南
- 2024-12-24Python编程基础入门
- 2024-12-24Python编程基础:变量与数据类型