OFDM系统仿真【matlab源码】
2022/1/15 14:04:26
本文主要是介绍OFDM系统仿真【matlab源码】,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
实验原理 链接: https://blog.csdn.net/qq_44394952/article/details/122508495.
OFDM.m
// clear all; close all; carrier_count = 200; % 子载波数 symbol_count = 100; %总符号数 ifft_length = 512; % IFFT长度 CP_length = 128; % 循环前缀 CS_length = 20; % 循环后缀 rate = []; SNR =20; bit_per_symbol = 4; alpha = 1.5/32; % 升余弦窗系数 % ================产生随机序列======================= bit_length = carrier_count*symbol_count*bit_per_symbol; bit_sequence = round(rand(1,bit_length))'; % 列向量 % =================串并转换========================== % ==================16QAM调制========================= % 1-28置零 29-228有效 229-285置零 286-485共轭 486-512置零 carrier_position = 29:228; conj_position = 485:-1:286; bit_moded = qammod(bit_sequence,16,'InputType','bit'); figure(1); scatter(real(bit_moded),imag(bit_moded)); title('调制后的星座图'); grid on; % ===================IFFT=========================== ifft_position = zeros(ifft_length,symbol_count); bit_moded = reshape(bit_moded,carrier_count,symbol_count); figure(2); stem(abs(bit_moded(:,1))); grid on; ifft_position(carrier_position,:)=bit_moded(:,:); ifft_position(conj_position,:)=conj(bit_moded(:,:)); signal_time = ifft(ifft_position,ifft_length); figure(3); subplot(3,1,1) plot(signal_time(:,1),'b'); title('原始单个OFDM符号'); xlabel('Time'); ylabel('Amplitude'); axis([0 500 -0.5 0.5]) % ==================加循环前缀和后缀================== signal_time_C = [signal_time(end-CP_length+1:end,:);signal_time]; signal_time_C = [signal_time_C; signal_time_C(1:CS_length,:)]; % 单个完整符号为512+128+20=660 subplot(3,1,2); plot(signal_time_C(:,1)); xlabel('Time'); ylabel('Amplitude'); title('加CP和CS的单个OFDM符号'); axis([0 500 -0.5 0.5]) % =======================加窗======================== signal_window = zeros(size(signal_time_C)); % 通过矩阵点乘 signal_window = signal_time_C.*repmat(rcoswindow(alpha,size(signal_time_C,1)),1,symbol_count); subplot(3,1,3) plot(signal_window(:,1)) title('加窗后的单个OFDM符号') xlabel('Time'); ylabel('Amplitude'); axis([0 500 -0.5 0.5]) % ===================发送信号,多径信道==================== signal_Tx = reshape(signal_window,1,[]); % 并串转换,变成时域一个完整信号,待传输 signal_origin = reshape(signal_time_C,1,[]); % 未加窗完整信号 mult_path_am = [1 0.2 0.1]; % 多径幅度 mutt_path_time = [0 20 50]; % 多径时延 windowed_Tx = zeros(size(signal_Tx)); path2 = 0.2*[zeros(1,20) signal_Tx(1:end-20) ]; path3 = 0.1*[zeros(1,50) signal_Tx(1:end-50) ]; signal_Tx_mult = signal_Tx + path2 + path3; % 多径信号 figure(4) subplot(2,1,1) plot(signal_Tx) title('单径下OFDM信号') xlabel('Time/samples') ylabel('Amplitude') axis([0 1000 -0.5 0.5]) subplot(2,1,2) plot(signal_Tx_mult) title('多径下OFDM信号') xlabel('Time/samples') ylabel('Amplitude') axis([0 1000 -0.5 0.5]) % =====================发送信号频谱======================== % 每个符号求频谱再平均,功率取对数 orgin_aver_power = 20*log10(mean(abs(fft(signal_time_C')))); % ====================加窗信号频谱========================= figure(5) % 归一化 orgin_aver_power = 20*log10(mean(abs(fft(signal_window')))); plot((1:length(orgin_aver_power))/length(orgin_aver_power),orgin_aver_power) hold on axis([0 1 -40 5]) grid on title('加窗信号频谱') % ========================加AWGN========================== signal_power_sig = var(signal_Tx); % 单径发送信号功率 signal_power_mut = var(signal_Tx_mult); % 多径发送信号功率 SNR_linear = 10^(SNR/10); noise_power_mut = signal_power_mut/SNR_linear; noise_power_sig = signal_power_sig/SNR_linear; noise_sig = randn(size(signal_Tx))*sqrt(noise_power_sig); noise_mut = randn(size(signal_Tx_mult))*sqrt(noise_power_mut); Rx_data_sig = signal_Tx+noise_sig; Rx_data_mut = signal_Tx_mult+noise_mut; % =======================串并转换========================== Rx_data_mut = reshape(Rx_data_mut,ifft_length+CS_length+CP_length,[]); Rx_data_sig = reshape(Rx_data_sig,ifft_length+CS_length+CP_length,[]); % ====================去循环前缀和后缀====================== Rx_data_sig(1:CP_length,:) = []; Rx_data_sig(end-CS_length+1:end,:) = []; Rx_data_mut(1:CP_length,:) = []; Rx_data_mut(end-CS_length+1:end,:) = []; % =========================FFT============================= fft_sig = fft(Rx_data_sig); fft_mut = fft(Rx_data_mut); % =========================恢复采样=========================== data_sig = fft_sig(carrier_position,:); data_mut = fft_mut(carrier_position,:); figure(6) scatter(real(reshape(data_sig,1,[])),imag(reshape(data_sig,1,[])),'.') grid on; title('单径接收信号星座图') figure(7) scatter(real(reshape(data_mut,1,[])),imag(reshape(data_mut,1,[])),'.') grid on; title('多径接收信号星座图') % =========================16QAM逆映射=========================== bit_demod_sig = reshape(qamdemod(data_sig,16,'OutputType','bit'),[],1); bit_demod_mut = reshape(qamdemod(data_mut,16,'OutputType','bit'),[],1); % =========================误码率=========================== error_bit_sig = sum(bit_demod_sig~=bit_sequence); error_bit_mut = sum(bit_demod_mut~=bit_sequence); error_rate_sig = error_bit_sig/bit_length; error_rate_mut = error_bit_mut/bit_length; rate = [rate; error_rate_sig error_rate_mut]
rcoswindow.m
function window=rcoswindow(alpha,bit_length) warning off; window = zeros(1,bit_length/2); t = 1:bit_length/2; T = bit_length/(2*(1+alpha)); window(t) = 0.5*(1 - sin(pi/(2*alpha*T)*(t-T))); window(1:(1-alpha)*T) = 1; window=[fliplr(window) window]'; end
这篇关于OFDM系统仿真【matlab源码】的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-17机器学习资料入门指南
- 2024-12-06如何用OpenShift流水线打造高效的机器学习运营体系(MLOps)
- 2024-12-06基于无监督机器学习算法的预测性维护讲解
- 2024-12-03【机器学习(六)】分类和回归任务-LightGBM算法-Sentosa_DSML社区版
- 2024-12-0210个必须使用的机器学习API,为高级分析助力
- 2024-12-01【机器学习(五)】分类和回归任务-AdaBoost算法-Sentosa_DSML社区版
- 2024-11-28【机器学习(四)】分类和回归任务-梯度提升决策树(GBDT)算法-Sentosa_DSML社区版
- 2024-11-26【机器学习(三)】分类和回归任务-随机森林(Random Forest,RF)算法-Sentosa_DSML社区版
- 2024-11-18机器学习与数据分析的区别
- 2024-10-28机器学习资料入门指南