如此优秀,这18个 Python 高效编程技巧真的太香了
2022/2/21 9:30:22
本文主要是介绍如此优秀,这18个 Python 高效编程技巧真的太香了,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
初识 Python 语言,觉得 Python 满足了我上学时候对编程语言的所有要求。python语言的高效编程技巧让我们这些大学曾经苦逼学了四年c或者c++的人,兴奋的不行不行的,终于解脱了。
高级语言,如果做不到这样,还扯啥高级呢?喜欢本文记得收藏、点赞、关注。
⚠️【注】文末提供技术交流群
01 交换变量
>>>a=3 >>>b=6
这个情况如果要交换变量在c++中,肯定需要一个空变量。但是python不需要,只需一行,大家看清楚了
>>>a,b=b,a >>>print(a) >>>6 >>>ptint(b) >>>5
02 字典推导(Dictionary comprehensions)和集合推导(Set comprehensions)
大多数的Python程序员都知道且使用过列表推导(list comprehensions)。如果你对list comprehensions概念不是很熟悉——一个list comprehension就是一个更简短、简洁的创建一个list的方法。
>>> some_list = [1, 2, 3, 4, 5] >>> another_list = [ x + 1 for x in some_list ] >>> another_list [2, 3, 4, 5, 6]
自从python 3.1 起,我们可以用同样的语法来创建集合和字典表:
>>> # Set Comprehensions >>> some_list = [1, 2, 3, 4, 5, 2, 5, 1, 4, 8] >>> even_set = { x for x in some_list if x % 2 == 0 } >>> even_set set([8, 2, 4]) >>> # Dict Comprehensions >>> d = { x: x % 2 == 0 for x in range(1, 11) } >>> d {1: False, 2: True, 3: False, 4: True, 5: False, 6: True, 7: False, 8: True, 9: False, 10: True}
在第一个例子里,我们以some_list为基础,创建了一个具有不重复元素的集合,而且集合里只包含偶数。而在字典表的例子里,我们创建了一个key是不重复的1到10之间的整数,value是布尔型,用来指示key是否是偶数。
这里另外一个值得注意的事情是集合的字面量表示法。我们可以简单的用这种方法创建一个集合:
>>> my_set = {1, 2, 1, 2, 3, 4} >>> my_set set([1, 2, 3, 4])
而不需要使用内置函数set()。
03 计数时使用Counter计数对象
这听起来显而易见,但经常被人忘记。对于大多数程序员来说,数一个东西是一项很常见的任务,而且在大多数情况下并不是很有挑战性的事情——这里有几种方法能更简单的完成这种任务。
Python的collections类库里有个内置的dict类的子类,是专门来干这种事情的:
>>> from collections import Counter >>> c = Counter('hello world') >>> c Counter({'l': 3, 'o': 2, ' ': 1, 'e': 1, 'd': 1, 'h': 1, 'r': 1, 'w': 1}) >>> c.most_common(2) [('l', 3), ('o', 2)]
04 漂亮的打印出JSON
JSON是一种非常好的数据序列化的形式,被如今的各种API和web service大量的使用。使用python内置的json处理,可以使JSON串具有一定的可读性,但当遇到大型数据时,它表现成一个很长的、连续的一行时,人的肉眼就很难观看了。
为了能让JSON数据表现的更友好,我们可以使用indent参数来输出漂亮的JSON。当在控制台交互式编程或做日志时,这尤其有用:
>>> import json >>> print(json.dumps(data)) # No indention {"status": "OK", "count": 2, "results": [{"age": 27, "name": "Oz", "lactose_intolerant": true}, {"age": 29, "name": "Joe", "lactose_intolerant": false}]} >>> print(json.dumps(data, indent=2)) # With indention { "status": "OK", "count": 2, "results": [ { "age": 27, "name": "Oz", "lactose_intolerant": true }, { "age": 29, "name": "Joe", "lactose_intolerant": false } ] }
同样,使用内置的pprint模块,也可以让其它任何东西打印输出的更漂亮。
05 解决FizzBuzz
前段时间Jeff Atwood 推广了一个简单的编程练习叫FizzBuzz,问题引用如下:
写一个程序,打印数字1到100,3的倍数打印“Fizz”来替换这个数,5的倍数打印“Buzz”,对于既是3的倍数又是5的倍数的数字打印“FizzBuzz”。
这里就是一个简短的,有意思的方法解决这个问题:
for x in range(1,101): print"fizz"[x%3*len('fizz')::]+"buzz"[x%5*len('buzz')::] or x
06 if 语句在行内
print "Hello" if True else "World" >>> Hello
07 连接
下面的最后一种方式在绑定两个不同类型的对象时显得很cool。
nfc = ["Packers", "49ers"] afc = ["Ravens", "Patriots"] print nfc + afc >>> ['Packers', '49ers', 'Ravens', 'Patriots'] print str(1) + " world" >>> 1 world print `1` + " world" >>> 1 world print 1, "world" >>> 1 world print nfc, 1 >>> ['Packers', '49ers'] 1
08 数值比较
这是我见过诸多语言中很少有的如此棒的简便法
x = 2 if 3 > x > 1: print x >>> 2 if 1 < x > 0: print x >>> 2
09 同时迭代两个列表
nfc = ["Packers", "49ers"] afc = ["Ravens", "Patriots"] for teama, teamb in zip(nfc, afc): print teama + " vs. " + teamb >>> Packers vs. Ravens >>> 49ers vs. Patriots
10 带索引的列表迭代
teams = ["Packers", "49ers", "Ravens", "Patriots"] for index, team in enumerate(teams): print index, team >>> 0 Packers >>> 1 49ers >>> 2 Ravens >>> 3 Patriots
11 列表推导式
已知一个列表,我们可以刷选出偶数列表方法:
numbers = [1,2,3,4,5,6] even = [] for number in numbers: if number%2 == 0: even.append(number)
转变成如下:
numbers = [1,2,3,4,5,6] even = [number for number in numbers if number%2 == 0]
12 字典推导
和列表推导类似,字典可以做同样的工作:
teams = ["Packers", "49ers", "Ravens", "Patriots"] print {key: value for value, key in enumerate(teams)} >>> {'49ers': 1, 'Ravens': 2, 'Patriots': 3, 'Packers': 0}
13 初始化列表的值
items = [0]*3 print items >>> [0,0,0]
14 列表转换为字符串
teams = ["Packers", "49ers", "Ravens", "Patriots"] print ", ".join(teams) >>> 'Packers, 49ers, Ravens, Patriots'
15 从字典中获取元素
我承认try/except代码并不雅致,不过这里有一种简单方法,尝试在字典中查找key,如果没有找到对应的alue将用第二个参数设为其变量值。
data = {'user': 1, 'name': 'Max', 'three': 4} try: is_admin = data['admin'] except KeyError: is_admin = False
替换成这样
data = {'user': 1, 'name': 'Max', 'three': 4} is_admin = data.get('admin', False)
16 获取列表的子集
有时,你只需要列表中的部分元素,这里是一些获取列表子集的方法。
x = [1,2,3,4,5,6] #前3个 print x[:3] >>> [1,2,3] #中间4个 print x[1:5] >>> [2,3,4,5] #最后3个 print x[3:] >>> [4,5,6] #奇数项 print x[::2] >>> [1,3,5] #偶数项 print x[1::2] >>> [2,4,6]
除了python内置的数据类型外,在collection模块同样还包括一些特别的用例,在有些场合Counter非常实用。如果你参加过在这一年的Facebook HackerCup,你甚至也能找到他的实用之处。
from collections import Counter print Counter("hello") >>> Counter({'l': 2, 'h': 1, 'e': 1, 'o': 1})
17 迭代工具
和collections库一样,还有一个库叫itertools,对某些问题真能高效地解决。其中一个用例是查找所有组合,他能告诉你在一个组中元素的所有不能的组合方式
from itertools import combinations teams = ["Packers", "49ers", "Ravens", "Patriots"] for game in combinations(teams, 2): print game >>> ('Packers', '49ers') >>> ('Packers', 'Ravens') >>> ('Packers', 'Patriots') >>> ('49ers', 'Ravens') >>> ('49ers', 'Patriots') >>> ('Ravens', 'Patriots')
18 False == True
比起实用技术来说这是一个很有趣的事,在python中,True和False是全局变量,因此:
False = True if False: print "Hello" else: print "World" >>> Hello
推荐文章
-
有人把吴恩达老师的机器学习和深度学习做成了中文版
-
其实特简单,Python 这款可视化大屏代码不足百行
-
上瘾了,最近又给公司撸了一个可视化大屏(附源码)
-
如此优雅,4款 Python 自动数据分析神器真香啊
-
梳理半月有余,精心准备了17张知识思维导图,这次要讲清统计学
-
年终汇总:20份可视化大屏模板,直接套用真香(文末附源码)
技术交流
欢迎转载、收藏、有所收获点赞支持一下!
目前开通了技术交流群,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友
- 方式①、发送如下图片至微信,长按识别,后台回复:加群;
- 方式②、添加微信号:dkl88191,备注:来自CSDN+研究方法
- 方式③、微信搜索公众号:Python学习与数据挖掘,后台回复:加群
这篇关于如此优秀,这18个 Python 高效编程技巧真的太香了的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-14获取参数学习:Python编程入门教程
- 2024-11-14Python编程基础入门
- 2024-11-14Python编程入门指南
- 2024-11-13Python基础教程
- 2024-11-12Python编程基础指南
- 2024-11-12Python基础编程教程
- 2024-11-08Python编程基础与实践示例
- 2024-11-07Python编程基础指南
- 2024-11-06Python编程基础入门指南
- 2024-11-06怎么使用python 计算两个GPS的距离功能-icode9专业技术文章分享