对python 数据处理中的LabelEncoder 和 OneHotEncoder详解

2019/7/15 0:31:48

本文主要是介绍对python 数据处理中的LabelEncoder 和 OneHotEncoder详解,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

如下所示:

#简单来说 LabelEncoder 是对不连续的数字或者文本进行编号
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
le.fit([1,5,67,100])
le.transform([1,1,100,67,5])
输出: array([0,0,3,2,1])

#OneHotEncoder 用于将表示分类的数据扩维:
from sklearn.preprocessing import OneHotEncoder
ohe = OneHotEncoder()
ohe.fit([[1],[2],[3],[4]])
ohe.transform([2],[3],[1],[4]).toarray()
输出:[ [0,1,0,0] , [0,0,1,0] , [1,0,0,0] ,[0,0,0,1] ]

以上这篇对python 数据处理中的LabelEncoder 和 OneHotEncoder详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持找一找教程网。



这篇关于对python 数据处理中的LabelEncoder 和 OneHotEncoder详解的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程