实验四 决策树算法及应用

2021/6/25 20:27:07

本文主要是介绍实验四 决策树算法及应用,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

实验一 决策树算法及应用

目录

- 一、实验目的

- 二、实验内容

- 三、实验报告要求

- 四、实验过程及步骤

- 五、实验小结

作业信息

博客班级 机器学习实验-计算机18级
作业要求 作业要求
作业目标 熟练掌握代码编写
学号 3180701303

一、实验目的

1.理解决策树算法原理,掌握决策树算法框架;
2.理解决策树学习算法的特征选择、树的生成和树的剪枝;
3.能根据不同的数据类型,选择不同的决策树算法;
4.针对特定应用场景及数据,能应用决策树算法解决实际问题

二、实验内容

1.设计算法实现熵、经验条件熵、信息增益等方法。
2.实现ID3算法。
3.熟悉sklearn库中的决策树算法;
4.针对iris数据集,应用sklearn的决策树算法进行类别预测。
5.针对iris数据集,利用自编决策树算法进行类别预测。

三、实验报告要求

1.对照实验内容,撰写实验过程、算法及测试结果;
2.代码规范化:命名规则、注释;
3.分析核心算法的复杂度;
4.查阅文献,讨论ID3、5算法的应用场景;
查询文献,分析决策树剪枝策略。

四、实验过程及其步骤

实验代码

1.设计算法实现熵、经验条件熵、信息增益等方法。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

from collections import Counter
import math
from math import log

import pprint
def create_data():
    datasets = [['青年', '否', '否', '一般', '否'],
               ['青年', '否', '否', '好', '否'],
               ['青年', '是', '否', '好', '是'],
               ['青年', '是', '是', '一般', '是'],
               ['青年', '否', '否', '一般', '否'],
               ['中年', '否', '否', '一般', '否'],
               ['中年', '否', '否', '好', '否'],
               ['中年', '是', '是', '好', '是'],
               ['中年', '否', '是', '非常好', '是'],
               ['中年', '否', '是', '非常好', '是'],
               ['老年', '否', '是', '非常好', '是'],
               ['老年', '否', '是', '好', '是'],
               ['老年', '是', '否', '好', '是'],
               ['老年', '是', '否', '非常好', '是'],
               ['老年', '否', '否', '一般', '否'],
               ]
    labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别']
    # 返回数据集和每个维度的名称
    return datasets, labels
datasets, labels = create_data()
train_data = pd.DataFrame(datasets, columns=labels)
train_data

X, y = data[:,:-1], data[:,-1]  # 数据类型转换,为了后面的数学计算
# 熵
def calc_ent(datasets):
    data_length = len(datasets)
    label_count = {}
    for i in range(data_length):
        label = datasets[i][-1]
        if label not in label_count:
            label_count[label] = 0
        label_count[label] += 1
    ent = -sum([(p/data_length)*log(p/data_length, 2) for p in label_count.values()])
    return ent

# 经验条件熵
def cond_ent(datasets, axis=0):
    data_length = len(datasets)
    feature_sets = {}
    for i in range(data_length):
        feature = datasets[i][axis]
        if feature not in feature_sets:
            feature_sets[feature] = []
        feature_sets[feature].append(datasets[i])
    cond_ent = sum([(len(p)/data_length)*calc_ent(p) for p in feature_sets.values()])
    return cond_ent

# 信息增益
def info_gain(ent, cond_ent):
    return ent - cond_ent

def info_gain_train(datasets):
    count = len(datasets[0]) - 1
    ent = calc_ent(datasets)
    best_feature = []
    for c in range(count):
        c_info_gain = info_gain(ent, cond_ent(datasets, axis=c))
        best_feature.append((c, c_info_gain))
        print('特征({}) - info_gain - {:.3f}'.format(labels[c], c_info_gain))
    # 比较大小
    best_ = max(best_feature, key=lambda x: x[-1])
    return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]])
info_gain_train(np.array(datasets))

2.利用ID3算法生成决策树

# 定义节点类 二叉树
class Node:
    def __init__(self, root=True, label=None, feature_name=None, feature=None):
        self.root = root
        self.label = label
        self.feature_name = feature_name
        self.feature = feature
        self.tree = {}
        self.result = {'label:': self.label, 'feature': self.feature, 'tree': self.tree}

    def __repr__(self):
        return '{}'.format(self.result)

    def add_node(self, val, node):
        self.tree[val] = node

    def predict(self, features):
        if self.root is True:
            return self.label
        return self.tree[features[self.feature]].predict(features)
    
class DTree:
    def __init__(self, epsilon=0.1):
        self.epsilon = epsilon
        self._tree = {}

    # 熵
    @staticmethod
    def calc_ent(datasets):
        data_length = len(datasets)
        label_count = {}
        for i in range(data_length):
            label = datasets[i][-1]
            if label not in label_count:
                label_count[label] = 0
            label_count[label] += 1
        ent = -sum([(p/data_length)*log(p/data_length, 2) for p in label_count.values()])
        return ent

    # 经验条件熵
    def cond_ent(self, datasets, axis=0):
        data_length = len(datasets)
        feature_sets = {}
        for i in range(data_length):
            feature = datasets[i][axis]
            if feature not in feature_sets:
                feature_sets[feature] = []
            feature_sets[feature].append(datasets[i])
        cond_ent = sum([(len(p)/data_length)*self.calc_ent(p) for p in feature_sets.values()])
        return cond_ent

    # 信息增益
    @staticmethod
    def info_gain(ent, cond_ent):
        return ent - cond_ent

    def info_gain_train(self, datasets):
        count = len(datasets[0]) - 1
        ent = self.calc_ent(datasets)
        best_feature = []
        for c in range(count):
            c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c))
            best_feature.append((c, c_info_gain))
        # 比较大小
        best_ = max(best_feature, key=lambda x: x[-1])
        return best_

    def train(self, train_data):
        """
        input:数据集D(DataFrame格式),特征集A,阈值eta
        output:决策树T
        """
        _, y_train, features = train_data.iloc[:, :-1], train_data.iloc[:, -1], train_data.columns[:-1]
        # 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回T
        if len(y_train.value_counts()) == 1:
            return Node(root=True,
                        label=y_train.iloc[0])

        # 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回T
        if len(features) == 0:
            return Node(root=True, label=y_train.value_counts().sort_values(ascending=False).index[0])

        # 3,计算最大信息增益 同5.1,Ag为信息增益最大的特征
        max_feature, max_info_gain = self.info_gain_train(np.array(train_data))
        max_feature_name = features[max_feature]

        # 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返回T
        if max_info_gain < self.epsilon:
            return Node(root=True, label=y_train.value_counts().sort_values(ascending=False).index[0])

        # 5,构建Ag子集
        node_tree = Node(root=False, feature_name=max_feature_name, feature=max_feature)

        feature_list = train_data[max_feature_name].value_counts().index
        for f in feature_list:
            sub_train_df = train_data.loc[train_data[max_feature_name] == f].drop([max_feature_name], axis=1)

            # 6, 递归生成树
            sub_tree = self.train(sub_train_df)
            node_tree.add_node(f, sub_tree)

        # pprint.pprint(node_tree.tree)
        return node_tree

    def fit(self, train_data):
        self._tree = self.train(train_data)
        return self._tree

    def predict(self, X_test):
        return self._tree.predict(X_test)
datasets, labels = create_data()
data_df = pd.DataFrame(datasets, columns=labels)
dt = DTree()
tree = dt.fit(data_df)
tree

dt.predict(['老年', '否', '否', '一般'])

# data
def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    data = np.array(df.iloc[:100, [0, 1, -1]])
    # print(data)
    return data[:,:2], data[:,-1]

X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
from sklearn.tree import DecisionTreeClassifier

from sklearn.tree import export_graphviz
import graphviz
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train,)

clf.score(X_test, y_test)

tree_pic = export_graphviz(clf, out_file="mytree.pdf")
with open('mytree.pdf') as f:
    dot_graph = f.read()
graphviz.Source(dot_graph)

from sklearn.tree import DecisionTreeClassifier
from sklearn import preprocessing
import numpy as np
import pandas as pd
from sklearn import tree
import graphviz
features = ["年龄", "有工作", "有自己的房子", "信贷情况"]
X_train = pd.DataFrame([
    ["青年", "否", "否", "一般"],
    ["青年", "否", "否", "好"],
    ["青年", "是", "否", "好"],
    ["青年", "是", "是", "一般"],
    ["青年", "否", "否", "一般"],
    ["中年", "否", "否", "一般"],
    ["中年", "否", "否", "好"],
    ["中年", "是", "是", "好"],
    ["中年", "否", "是", "非常好"],
    ["中年", "否", "是", "非常好"],
    ["老年", "否", "是", "非常好"],
    ["老年", "否", "是", "好"],
    ["老年", "是", "否", "好"],
    ["老年", "是", "否", "非常好"],
    ["老年", "否", "否", "一般"]
])
y_train = pd.DataFrame(["否", "否", "是", "是", "否",
                        "否", "否", "是", "是", "是",
                        "是", "是", "是", "是", "否"])
# 数据预处理
le_x = preprocessing.LabelEncoder()
le_x.fit(np.unique(X_train))
X_train = X_train.apply(le_x.transform)
le_y = preprocessing.LabelEncoder()
le_y.fit(np.unique(y_train))
y_train = y_train.apply(le_y.transform)
# 调用sklearn.DT建立训练模型
model_tree = DecisionTreeClassifier()
model_tree.fit(X_train, y_train)
# 可视化
dot_data = tree.export_graphviz(model_tree, out_file=None,
                                    feature_names=features,
                                    class_names=[str(k) for k in np.unique(y_train)],
                                    filled=True, rounded=True,
                                    special_characters=True)
graph = graphviz.Source(dot_data)
graph

import numpy as np
class LeastSqRTree:
    def __init__(self, train_X, y, epsilon):
        # 训练集特征值
        self.x = train_X
        # 类别
        self.y = y
        # 特征总数
        self.feature_count = train_X.shape[1]
        # 损失阈值
        self.epsilon = epsilon
        # 回归树
        self.tree = None
    def _fit(self, x, y, feature_count, epsilon):
        # 选择最优切分点变量j与切分点s
        (j, s, minval, c1, c2) = self._divide(x, y, feature_count)
        # 初始化树
        tree = {"feature": j, "value": x[s, j], "left": None, "right": None}
        if minval < self.epsilon or len(y[np.where(x[:, j] <= x[s, j])]) <= 1:
            tree["left"] = c1
        else:
            tree["left"] = self._fit(x[np.where(x[:, j] <= x[s, j])],
                                     y[np.where(x[:, j] <= x[s, j])],
                                     self.feature_count, self.epsilon)
        if minval < self.epsilon or len(y[np.where(x[:, j] > s)]) <= 1:
            tree["right"] = c2
        else:
            tree["right"] = self._fit(x[np.where(x[:, j] > x[s, j])],
                                      y[np.where(x[:, j] > x[s, j])],
                                      self.feature_count, self.epsilon)
        return tree
    def fit(self):
        self.tree = self._fit(self.x, self.y, self.feature_count, self.epsilon)
    @staticmethod
    def _divide(x, y, feature_count):
        # 初始化损失误差
        cost = np.zeros((feature_count, len(x)))
        # 公式5.21
        for i in range(feature_count):
            for k in range(len(x)):
                # k行i列的特征值
                value = x[k, i]
                y1 = y[np.where(x[:, i] <= value)]
                c1 = np.mean(y1)
                y2 = y[np.where(x[:, i] > value)]
                c2 = np.mean(y2)
                y1[:] = y1[:] - c1
                y2[:] = y2[:] - c2
                cost[i, k] = np.sum(y1 * y1) + np.sum(y2 * y2)
        # 选取最优损失误差点
        cost_index = np.where(cost == np.min(cost))
        # 选取第几个特征值
        j = cost_index[0][0]
        # 选取特征值的切分点
        s = cost_index[1][0]
        # 求两个区域的均值c1,c2
        c1 = np.mean(y[np.where(x[:, j] <= x[s, j])])
        c2 = np.mean(y[np.where(x[:, j] > x[s, j])])
        return j, s, cost[cost_index], c1, c2
train_X = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]).T
y = np.array([4.50, 4.75, 4.91, 5.34, 5.80, 7.05, 7.90, 8.23, 8.70, 9.00])
model_tree = LeastSqRTree(train_X, y, .2)
model_tree.fit()
model_tree.tree

五、实验小结

本次实验学习了决策树决策树算法原理,并且实现了简单的掌握决策树算法,以及决策树学习算法的特征选择、树的生成和树的剪枝。决策树只需要一次构建,反复使用,效率较高,每一次预测的最大计算次数不超过决策树的深度,可以处理不相关特征数据,能够处理多输出的问题,并且对缺失值不敏感;但是对连续性的字段比较难预测,容易出现过拟合,当类别太多时,错误可能就会增加的比较快,而且对于各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。



这篇关于实验四 决策树算法及应用的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程