实验四 决策树算法及应用

2021/6/28 14:20:20

本文主要是介绍实验四 决策树算法及应用,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

| 班级 | 计算机183 |
| 姓名 | 杨文敖 | |
| 学号 | 3180701319 |
| 作业要求 | 决策树算法及应用 |

【实验目的】
理解决策树算法原理,掌握决策树算法框架;
理解决策树学习算法的特征选择、树的生成和树的剪枝;
能根据不同的数据类型,选择不同的决策树算法;
针对特定应用场景及数据,能应用决策树算法解决实际问题。

【实验内容】
设计算法实现熵、经验条件熵、信息增益等方法。
实现ID3算法。
熟悉sklearn库中的决策树算法;
针对iris数据集,应用sklearn的决策树算法进行类别预测。
针对iris数据集,利用自编决策树算法进行类别预测。

【实验报告要求】
对照实验内容,撰写实验过程、算法及测试结果;
代码规范化:命名规则、注释;
分析核心算法的复杂度;
查阅文献,讨论ID3、5算法的应用场景;
查询文献,分析决策树剪枝策略。

【实验内容及结果】
实验代码及截图
1.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter
import math
from math import log
import pprint

书上题目5.1

def create_data():
datasets = [['青年', '否', '否', '一般', '否'],
['青年', '否', '否', '好', '否'],
['青年', '是', '否', '好', '是'],
['青年', '是', '是', '一般', '是'],
['青年', '否', '否', '一般', '否'],
['中年', '否', '否', '一般', '否'],
['中年', '否', '否', '好', '否'],
['中年', '是', '是', '好', '是'],
['中年', '否', '是', '非常好', '是'],
['中年', '否', '是', '非常好', '是'],
['老年', '否', '是', '非常好', '是'],
['老年', '否', '是', '好', '是'],
['老年', '是', '否', '好', '是'],
['老年', '是', '否', '非常好', '是'],
['老年', '否', '否', '一般', '否'],
]
labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别']
# 返回数据集和每个维度的名称
return datasets, labels

datasets, labels = create_data()

4.train_data = pd.DataFrame(datasets, columns=labels)

5.train_data

6.# 熵
def calc_ent(datasets):
data_length = len(datasets)
label_count = {}
for i in range(data_length):
label = datasets[i][-1]
if label not in label_count:
label_count[label] = 0
label_count[label] += 1
ent = -sum([(p/data_length)*log(p/data_length, 2) for p in label_count.values()])
return ent

经验条件熵

def cond_ent(datasets, axis=0):
data_length = len(datasets)
feature_sets = {}
for i in range(data_length):
feature = datasets[i][axis]
if feature not in feature_sets:
feature_sets[feature] = []
feature_sets[feature].append(datasets[i])
cond_ent = sum([(len(p)/data_length)*calc_ent(p) for p in feature_sets.values()])
return cond_ent

信息增益

def info_gain(ent, cond_ent):
return ent - cond_ent

def info_gain_train(datasets):
count = len(datasets[0]) - 1
ent = calc_ent(datasets)
best_feature = []
for c in range(count):
c_info_gain = info_gain(ent, cond_ent(datasets, axis=c))
best_feature.append((c, c_info_gain))
print('特征({}) - info_gain - {:.3f}'.format(labels[c], c_info_gain))
# 比较大小
best_ = max(best_feature, key=lambda x: x[-1])
return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]])

7.info_gain_train(np.array(datasets))

8.# 定义节点类 二叉树
class Node:
def init(self, root=True, label=None, feature_name=None, feature=None):
self.root = root
self.label = label
self.feature_name = feature_name
self.feature = feature
self.tree = {}
self.result = {'label:': self.label, 'feature': self.feature, 'tree': self.tree}

def __repr__(self):
    return '{}'.format(self.result)

def add_node(self, val, node):
    self.tree[val] = node

def predict(self, features):
    if self.root is True:
        return self.label
    return self.tree[features[self.feature]].predict(features)

class DTree:
def init(self, epsilon=0.1):
self.epsilon = epsilon
self._tree = {}

# 熵
@staticmethod
def calc_ent(datasets):
    data_length = len(datasets)
    label_count = {}
    for i in range(data_length):
        label = datasets[i][-1]
        if label not in label_count:
            label_count[label] = 0
        label_count[label] += 1
    ent = -sum([(p/data_length)*log(p/data_length, 2) for p in label_count.values()])
    return ent

# 经验条件熵
def cond_ent(self, datasets, axis=0):
    data_length = len(datasets)
    feature_sets = {}
    for i in range(data_length):
        feature = datasets[i][axis]
        if feature not in feature_sets:
            feature_sets[feature] = []
        feature_sets[feature].append(datasets[i])
    cond_ent = sum([(len(p)/data_length)*self.calc_ent(p) for p in feature_sets.values()])
    return cond_ent

# 信息增益
@staticmethod
def info_gain(ent, cond_ent):
    return ent - cond_ent

def info_gain_train(self, datasets):
    count = len(datasets[0]) - 1
    ent = self.calc_ent(datasets)
    best_feature = []
    for c in range(count):
        c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c))
        best_feature.append((c, c_info_gain))
    # 比较大小
    best_ = max(best_feature, key=lambda x: x[-1])
    return best_

def train(self, train_data):
    """
    input:数据集D(DataFrame格式),特征集A,阈值eta
    output:决策树T
    """
    _, y_train, features = train_data.iloc[:, :-1], train_data.iloc[:, -1], train_data.columns[:-1]
    # 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回T
    if len(y_train.value_counts()) == 1:
        return Node(root=True,
                    label=y_train.iloc[0])

    # 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回T
    if len(features) == 0:
        return Node(root=True, label=y_train.value_counts().sort_values(ascending=False).index[0])

    # 3,计算最大信息增益 同5.1,Ag为信息增益最大的特征
    max_feature, max_info_gain = self.info_gain_train(np.array(train_data))
    max_feature_name = features[max_feature]

    # 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返回T
    if max_info_gain < self.epsilon:
        return Node(root=True, label=y_train.value_counts().sort_values(ascending=False).index[0])

    # 5,构建Ag子集
    node_tree = Node(root=False, feature_name=max_feature_name, feature=max_feature)

    feature_list = train_data[max_feature_name].value_counts().index
    for f in feature_list:
        sub_train_df = train_data.loc[train_data[max_feature_name] == f].drop([max_feature_name], axis=1)

        # 6, 递归生成树
        sub_tree = self.train(sub_train_df)
        node_tree.add_node(f, sub_tree)

    # pprint.pprint(node_tree.tree)
    return node_tree

def fit(self, train_data):
    self._tree = self.train(train_data)
    return self._tree

def predict(self, X_test):
    return self._tree.predict(X_test)



9.datasets, labels = create_data()
data_df = pd.DataFrame(datasets, columns=labels)
dt = DTree()
tree = dt.fit(data_df)

10.tree

11.dt.predict(['老年', '否', '否', '一般'])

12.# data
def create_data():
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['label'] = iris.target
df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
data = np.array(df.iloc[:100, [0, 1, -1]])
# print(data)
return data[:,:2], data[:,-1]

X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

13.from sklearn.tree import DecisionTreeClassifier

from sklearn.tree import export_graphviz
import graphviz

14.clf = DecisionTreeClassifier()
clf.fit(X_train, y_train,)

15.clf.score(X_test, y_test)

16.tree_pic = export_graphviz(clf, out_file="mytree.pdf")
with open('mytree.pdf') as f:
dot_graph = f.read()

17.graphviz.Source(dot_graph)

【实验小结】
1、讨论ID3、C4.5算法的应用场景
ID3算法应用场景:
它的基础理论清晰,算法比较简单,学习能力较强,适于处理大规模的学习问题,是数据挖掘和知识发现领域中的一个很好的范例,为后来各学者提出优化算法奠定了理论基础。ID3算法特别在机器学习、知识发现和数据挖掘等领域得到了极大发展。

C4.5算法应用场景:
C4.5算法具有条理清晰,能处理连续型属性,防止过拟合,准确率较高和适用范围广等优点,是一个很有实用价值的决策树算法,可以用来分类,也可以用来回归。C4.5算法在机器学习、知识发现、金融分析、遥感影像分类、生产制造、分子生物学和数据挖掘等领域得到广泛应用。

2、分析决策树剪枝策略
剪枝的目的在于:缓解决策树的"过拟合",降低模型复杂度,提高模型整体的学习效率
(决策树生成学习局部的模型,而决策树剪枝学习整体的模型)
基本策略:
预剪枝:是指在决策树生成过程中,对每一个结点在划分前进行估计,若当前结点的划分不能带来决策树泛化性能提升,则停止划分并将当前结点标记为叶子结点。
优点:降低了过拟合地风险,并显著减少了决策树地训练时间开销和测试时间开销。
缺点:有些分支地当前划分虽不能提升泛化性能、甚至可能导致泛化性能下降,但是在其基础上进行地后续划分却可能导致性能显著提高;
预剪枝基于'贪心'本质禁止这些分支展开,给预剪枝决策树带来了欠拟合的风险。
后剪枝:先从训练集生成一棵完整的决策树,然后自底向上地对非叶子结点进行考察,若将该结点对应地子树替换为叶结点能带来决策树泛化性能提升,则将该子树替换为叶结点。
优点:一般情况下后剪枝决策树的欠拟合风险很小,泛化性能往往优于预剪枝决策树。
缺点:自底向上的注意考察,时间开销较高。



这篇关于实验四 决策树算法及应用的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程