实验四 决策树算法及应用
2021/6/30 11:21:14
本文主要是介绍实验四 决策树算法及应用,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
目录- 【作业信息】
- 一、实验目的
- 二、实验内容
- 三、实验报告要求
- 四、实验过程及步骤
【作业信息】
作业课程 | 机器学习 |
---|---|
作业要求 | 作业要求 |
作业目标 | 决策树算法及应用 |
学号 | 3180205402 |
一、实验目的
1.理解决策树算法原理,掌握决策树算法框架;
2.理解决策树学习算法的特征选择、树的生成和树的剪枝;
3.能根据不同的数据类型,选择不同的决策树算法;
4.针对特定应用场景及数据,能应用决策树算法解决实际问题。
二、实验内容
1.设计算法实现熵、经验条件熵、信息增益等方法。
2.实现ID3算法。
3.熟悉sklearn库中的决策树算法;
4.针对iris数据集,应用sklearn的决策树算法进行类别预测。
5.针对iris数据集,利用自编决策树算法进行类别预测。
三、实验报告要求
1.对照实验内容,撰写实验过程、算法及测试结果;
2.代码规范化:命名规则、注释;
3.分析核心算法的复杂度;
4.查阅文献,讨论ID3、5算法的应用场景;
5.查询文献,分析决策树剪枝策略。
四、实验过程及步骤
import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from collections import Counter import math from math import log import pprint
datasets, labels = create_data()
train_data = pd.DataFrame(datasets, columns=labels)
train_data
# 熵 def calc_ent(datasets): data_length = len(datasets) label_count = {} for i in range(data_length): label = datasets[i][-1] if label not in label_count: label_count[label] = 0 label_count[label] += 1 ent = -sum([(p / data_length) * log(p / data_length, 2) for p in label_count.values()]) return ent # def entropy(y): # """ # Entropy of a label sequence # """ # hist = np.bincount(y) # ps = hist / np.sum(hist) # return -np.sum([p * np.log2(p) for p in ps if p > 0]) # 经验条件熵 def cond_ent(datasets, axis=0): data_length = len(datasets) feature_sets = {} for i in range(data_length): feature = datasets[i][axis] if feature not in feature_sets: feature_sets[feature] = [] feature_sets[feature].append(datasets[i]) cond_ent = sum( [(len(p) / data_length) * calc_ent(p) for p in feature_sets.values()]) return cond_ent # 信息增益 def info_gain(ent, cond_ent): return ent - cond_ent def info_gain_train(datasets): count = len(datasets[0]) - 1 ent = calc_ent(datasets) # ent = entropy(datasets) best_feature = [] for c in range(count): c_info_gain = info_gain(ent, cond_ent(datasets, axis=c)) best_feature.append((c, c_info_gain)) print('特征({}) - info_gain - {:.3f}'.format(labels[c], c_info_gain)) # 比较大小 best_ = max(best_feature, key=lambda x: x[-1]) return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]])
info_gain_train(np.array(datasets))
# 定义节点类 二叉树 class Node: def __init__(self, root=True, label=None, feature_name=None, feature=None): self.root = root self.label = label self.feature_name = feature_name self.feature = feature self.tree = {} self.result = { 'label:': self.label, 'feature': self.feature, 'tree': self.tree } def __repr__(self): return '{}'.format(self.result) def add_node(self, val, node): self.tree[val] = node def predict(self, features): if self.root is True: return self.label return self.tree[features[self.feature]].predict(features) class DTree: def __init__(self, epsilon=0.1): self.epsilon = epsilon self._tree = {} # 熵 @staticmethod def calc_ent(datasets): data_length = len(datasets) label_count = {} for i in range(data_length): label = datasets[i][-1] if label not in label_count: label_count[label] = 0 label_count[label] += 1 ent = -sum([(p / data_length) * log(p / data_length, 2) for p in label_count.values()]) return ent # 经验条件熵 def cond_ent(self, datasets, axis=0): data_length = len(datasets) feature_sets = {} for i in range(data_length): feature = datasets[i][axis] if feature not in feature_sets: feature_sets[feature] = [] feature_sets[feature].append(datasets[i]) cond_ent = sum([(len(p) / data_length) * self.calc_ent(p) for p in feature_sets.values()]) return cond_ent # 信息增益 @staticmethod def info_gain(ent, cond_ent): return ent - cond_ent def info_gain_train(self, datasets): count = len(datasets[0]) - 1 ent = self.calc_ent(datasets) best_feature = [] for c in range(count): c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c)) best_feature.append((c, c_info_gain)) # 比较大小 best_ = max(best_feature, key=lambda x: x[-1]) return best_ def train(self, train_data): """ input:数据集D(DataFrame格式),特征集A,阈值eta output:决策树T """ _, y_train, features = train_data.iloc[:, : -1], train_data.iloc[:, -1], train_data.columns[: -1] # 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回T if len(y_train.value_counts()) == 1: return Node(root=True, label=y_train.iloc[0]) # 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回T if len(features) == 0: return Node( root=True, label=y_train.value_counts().sort_values( ascending=False).index[0]) # 3,计算最大信息增益 同5.1,Ag为信息增益最大的特征 max_feature, max_info_gain = self.info_gain_train(np.array(train_data)) max_feature_name = features[max_feature] # 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返 if max_info_gain < self.epsilon: return Node( root=True, label=y_train.value_counts().sort_values( ascending=False).index[0]) # 5,构建Ag子集 node_tree = Node( root=False, feature_name=max_feature_name, feature=max_feature) feature_list = train_data[max_feature_name].value_counts().index for f in feature_list: sub_train_df = train_data.loc[train_data[max_feature_name] == f].drop([max_feature_name], axis=1) # 6, 递归生成树 sub_tree = self.train(sub_train_df) node_tree.add_node(f, sub_tree) # pprint.pprint(node_tree.tree) return node_tree def fit(self, train_data): self._tree = self.train(train_data) return self._tree def predict(self, X_test): return self._tree.predict(X_test)
这篇关于实验四 决策树算法及应用的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-25初学者必备:订单系统资料详解与实操教程
- 2024-12-24内网穿透资料入门教程
- 2024-12-24微服务资料入门指南
- 2024-12-24微信支付系统资料入门教程
- 2024-12-24微信支付资料详解:新手入门指南
- 2024-12-24Hbase资料:新手入门教程
- 2024-12-24Java部署资料
- 2024-12-24Java订单系统资料:新手入门教程
- 2024-12-24Java分布式资料入门教程
- 2024-12-24Java监控系统资料详解与入门教程