使用ResNet101作为预训练模型训练Faster-RCNN-TensorFlow-Python3-master
2022/1/23 22:04:25
本文主要是介绍使用ResNet101作为预训练模型训练Faster-RCNN-TensorFlow-Python3-master,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
使用VGG16作为预训练模型训练Faster-RCNN-TensorFlow-Python3-master的详细步骤→Windows10+Faster-RCNN-TensorFlow-Python3-master+VOC2007数据集。
如果使用ResNet101作为预训练模型训练Faster-RCNN-TensorFlow-Python3-master,在之前使用VGG16作为预训练模型的训练步骤基础上需要修改几个地方。
- 第一个,在之前的第6步时,改为下载预训练模型ResNet101,在
./data
文件夹下新建文件夹imagenet_weights
,将下载好的resnet_v1_101_2016_08_28.tar.gz
解压到./data/imagenet_weights
路径下,并将resnet_v1_101.ckpt
重命名为resnet101.ckpt
。
- 第二个,在之前的第7步时,除了修改最大迭代次数
max_iters
参数和迭代多少次保存一次模型snap_iterations
参数之外,还需要修改以下几个参数。
① 将network
参数由vgg16改为resnet101
② 将pretrained_model
参数由./data/imagenet_weights/vgg16.ckpt改为./data/imagenet_weights/resnet101.ckpt
③ 增加pooling_mode
、FIXED_BLOCKS
、POOLING_SIZE
、MAX_POOL
四个参数
tf.app.flags.DEFINE_string('network', "resnet101", "The network to be used as backbone")
tf.app.flags.DEFINE_string('pretrained_model', "./data/imagenet_weights/resnet101.ckpt", "Pretrained network weights")
# ResNet options tf.app.flags.DEFINE_string('pooling_mode', "crop", "Default pooling mode") tf.app.flags.DEFINE_integer('FIXED_BLOCKS', 1, "Number of fixed blocks during training") tf.app.flags.DEFINE_integer('POOLING_SIZE', 7, "Size of the pooled region after RoI pooling") tf.app.flags.DEFINE_boolean('MAX_POOL', False, "Whether to append max-pooling after crop_and_resize")
- 第三个,对
resnet_v1.py
文件进行修改,用下面的代码替换原文件中的代码。
# -------------------------------------------------------- # Tensorflow Faster R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by Zheqi He and Xinlei Chen # -------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import tensorflow.contrib.slim as slim from tensorflow.contrib.slim import losses from tensorflow.contrib.slim import arg_scope from tensorflow.contrib.slim.python.slim.nets import resnet_utils from tensorflow.contrib.slim.python.slim.nets import resnet_v1 import numpy as np from lib.nets.network import Network from tensorflow.python.framework import ops from tensorflow.contrib.layers.python.layers import regularizers from tensorflow.python.ops import nn_ops from tensorflow.contrib.layers.python.layers import initializers from tensorflow.contrib.layers.python.layers import layers from lib.config import config as cfg def resnet_arg_scope(is_training=True, weight_decay=cfg.FLAGS.weight_decay, # weight_decay=cfg.TRAIN.WEIGHT_DECAY, batch_norm_decay=0.997, batch_norm_epsilon=1e-5, batch_norm_scale=True): batch_norm_params = { # NOTE 'is_training' here does not work because inside resnet it gets reset: # https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v1.py#L187 'is_training': False, 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon, 'scale': batch_norm_scale, 'trainable': False, 'updates_collections': ops.GraphKeys.UPDATE_OPS } with arg_scope( [slim.conv2d], weights_regularizer=regularizers.l2_regularizer(weight_decay), weights_initializer=initializers.variance_scaling_initializer(), trainable=is_training, activation_fn=nn_ops.relu, normalizer_fn=layers.batch_norm, normalizer_params=batch_norm_params): with arg_scope([layers.batch_norm], **batch_norm_params) as arg_sc: return arg_sc class resnetv1(Network): def __init__(self, batch_size=1, num_layers=101): Network.__init__(self, batch_size=batch_size) self._num_layers = num_layers self._resnet_scope = 'resnet_v1_%d' % num_layers def _crop_pool_layer(self, bottom, rois, name): with tf.variable_scope(name) as scope: batch_ids = tf.squeeze(tf.slice(rois, [0, 0], [-1, 1], name="batch_id"), [1]) # Get the normalized coordinates of bboxes bottom_shape = tf.shape(bottom) height = (tf.to_float(bottom_shape[1]) - 1.) * np.float32(self._feat_stride[0]) width = (tf.to_float(bottom_shape[2]) - 1.) * np.float32(self._feat_stride[0]) x1 = tf.slice(rois, [0, 1], [-1, 1], name="x1") / width y1 = tf.slice(rois, [0, 2], [-1, 1], name="y1") / height x2 = tf.slice(rois, [0, 3], [-1, 1], name="x2") / width y2 = tf.slice(rois, [0, 4], [-1, 1], name="y2") / height # Won't be backpropagated to rois anyway, but to save time bboxes = tf.stop_gradient(tf.concat([y1, x1, y2, x2], 1)) if cfg.FLAGS.MAX_POOL: pre_pool_size = cfg.FLAGS.POOLING_SIZE * 2 crops = tf.image.crop_and_resize(bottom, bboxes, tf.to_int32(batch_ids), [pre_pool_size, pre_pool_size], name="crops") crops = slim.max_pool2d(crops, [2, 2], padding='SAME') else: crops = tf.image.crop_and_resize(bottom, bboxes, tf.to_int32(batch_ids), [cfg.FLAGS.POOLING_SIZE, cfg.FLAGS.POOLING_SIZE], name="crops") return crops # Do the first few layers manually, because 'SAME' padding can behave inconsistently # for images of different sizes: sometimes 0, sometimes 1 def build_base(self): with tf.variable_scope(self._resnet_scope, self._resnet_scope): net = resnet_utils.conv2d_same(self._image, 64, 7, stride=2, scope='conv1') net = tf.pad(net, [[0, 0], [1, 1], [1, 1], [0, 0]]) net = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID', scope='pool1') return net def build_network(self, sess, is_training=True): # select initializers # if cfg.TRAIN.TRUNCATED: if cfg.FLAGS.initializer == "truncated": initializer = tf.truncated_normal_initializer(mean=0.0, stddev=0.01) initializer_bbox = tf.truncated_normal_initializer(mean=0.0, stddev=0.001) else: initializer = tf.random_normal_initializer(mean=0.0, stddev=0.01) initializer_bbox = tf.random_normal_initializer(mean=0.0, stddev=0.001) bottleneck = resnet_v1.bottleneck # choose different blocks for different number of layers if self._num_layers == 50: blocks = [ resnet_utils.Block('block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]), resnet_utils.Block('block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]), # Use stride-1 for the last conv4 layer resnet_utils.Block('block3', bottleneck, [(1024, 256, 1)] * 5 + [(1024, 256, 1)]), resnet_utils.Block('block4', bottleneck, [(2048, 512, 1)] * 3) ] elif self._num_layers == 101: # blocks = [ # resnet_utils.Block('block1', bottleneck, # [(256, 64, 1)] * 2 + [(256, 64, 2)]), # resnet_utils.Block('block2', bottleneck, # [(512, 128, 1)] * 3 + [(512, 128, 2)]), # # Use stride-1 for the last conv4 layer # resnet_utils.Block('block3', bottleneck, # [(1024, 256, 1)] * 22 + [(1024, 256, 1)]), # resnet_utils.Block('block4', bottleneck, [(2048, 512, 1)] * 3) # ] blocks = [ resnet_v1.resnet_v1_block('block1', base_depth=64, num_units=3, stride=2), resnet_v1.resnet_v1_block('block2', base_depth=128, num_units=4, stride=2), resnet_v1.resnet_v1_block('block3', base_depth=256, num_units=23, stride=1), resnet_v1.resnet_v1_block('block4', base_depth=512, num_units=3, stride=1), ] elif self._num_layers == 152: blocks = [ resnet_utils.Block('block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]), resnet_utils.Block('block2', bottleneck, [(512, 128, 1)] * 7 + [(512, 128, 2)]), # Use stride-1 for the last conv4 layer resnet_utils.Block('block3', bottleneck, [(1024, 256, 1)] * 35 + [(1024, 256, 1)]), resnet_utils.Block('block4', bottleneck, [(2048, 512, 1)] * 3) ] else: # other numbers are not supported raise NotImplementedError # assert (0 <= cfg.RESNET.FIXED_BLOCKS < 4) assert (0 <= cfg.FLAGS.FIXED_BLOCKS < 4) if cfg.FLAGS.FIXED_BLOCKS == 3: with slim.arg_scope(resnet_arg_scope(is_training=False)): net = self.build_base() net_conv4, _ = resnet_v1.resnet_v1(net, blocks[0:cfg.FLAGS.FIXED_BLOCKS], global_pool=False, include_root_block=False, scope=self._resnet_scope) elif cfg.FLAGS.FIXED_BLOCKS > 0: with slim.arg_scope(resnet_arg_scope(is_training=False)): net = self.build_base() net, _ = resnet_v1.resnet_v1(net, blocks[0:cfg.FLAGS.FIXED_BLOCKS], global_pool=False, include_root_block=False, scope=self._resnet_scope) with slim.arg_scope(resnet_arg_scope(is_training=is_training)): net_conv4, _ = resnet_v1.resnet_v1(net, blocks[cfg.FLAGS.FIXED_BLOCKS:-1], global_pool=False, include_root_block=False, scope=self._resnet_scope) else: # cfg.RESNET.FIXED_BLOCKS == 0 with slim.arg_scope(resnet_arg_scope(is_training=is_training)): net = self.build_base() net_conv4, _ = resnet_v1.resnet_v1(net, blocks[0:-1], global_pool=False, include_root_block=False, scope=self._resnet_scope) self._act_summaries.append(net_conv4) self._layers['head'] = net_conv4 with tf.variable_scope(self._resnet_scope, self._resnet_scope): # build the anchors for the image self._anchor_component() # rpn rpn = slim.conv2d(net_conv4, 512, [3, 3], trainable=is_training, weights_initializer=initializer, scope="rpn_conv/3x3") self._act_summaries.append(rpn) rpn_cls_score = slim.conv2d(rpn, self._num_anchors * 2, [1, 1], trainable=is_training, weights_initializer=initializer, padding='VALID', activation_fn=None, scope='rpn_cls_score') # change it so that the score has 2 as its channel size rpn_cls_score_reshape = self._reshape_layer(rpn_cls_score, 2, 'rpn_cls_score_reshape') rpn_cls_prob_reshape = self._softmax_layer(rpn_cls_score_reshape, "rpn_cls_prob_reshape") rpn_cls_prob = self._reshape_layer(rpn_cls_prob_reshape, self._num_anchors * 2, "rpn_cls_prob") rpn_bbox_pred = slim.conv2d(rpn, self._num_anchors * 4, [1, 1], trainable=is_training, weights_initializer=initializer, padding='VALID', activation_fn=None, scope='rpn_bbox_pred') if is_training: rois, roi_scores = self._proposal_layer(rpn_cls_prob, rpn_bbox_pred, "rois") rpn_labels = self._anchor_target_layer(rpn_cls_score, "anchor") # Try to have a determinestic order for the computing graph, for reproducibility with tf.control_dependencies([rpn_labels]): rois, _ = self._proposal_target_layer(rois, roi_scores, "rpn_rois") else: # if cfg.TEST.MODE == 'nms': if cfg.FLAGS.test_mode == "nms": rois, _ = self._proposal_layer(rpn_cls_prob, rpn_bbox_pred, "rois") # elif cfg.TEST.MODE == 'top': elif cfg.FLAGS.test_mode == "top": rois, _ = self._proposal_top_layer(rpn_cls_prob, rpn_bbox_pred, "rois") else: raise NotImplementedError # rcnn if cfg.FLAGS.pooling_mode == 'crop': pool5 = self._crop_pool_layer(net_conv4, rois, "pool5") else: raise NotImplementedError with slim.arg_scope(resnet_arg_scope(is_training=is_training)): fc7, _ = resnet_v1.resnet_v1(pool5, blocks[-1:], global_pool=False, include_root_block=False, scope=self._resnet_scope) with tf.variable_scope(self._resnet_scope, self._resnet_scope): # Average pooling done by reduce_mean fc7 = tf.reduce_mean(fc7, axis=[1, 2]) cls_score = slim.fully_connected(fc7, self._num_classes, weights_initializer=initializer, trainable=is_training, activation_fn=None, scope='cls_score') cls_prob = self._softmax_layer(cls_score, "cls_prob") bbox_pred = slim.fully_connected(fc7, self._num_classes * 4, weights_initializer=initializer_bbox, trainable=is_training, activation_fn=None, scope='bbox_pred') self._predictions["rpn_cls_score"] = rpn_cls_score self._predictions["rpn_cls_score_reshape"] = rpn_cls_score_reshape self._predictions["rpn_cls_prob"] = rpn_cls_prob self._predictions["rpn_bbox_pred"] = rpn_bbox_pred self._predictions["cls_score"] = cls_score self._predictions["cls_prob"] = cls_prob self._predictions["bbox_pred"] = bbox_pred self._predictions["rois"] = rois self._score_summaries.update(self._predictions) return rois, cls_prob, bbox_pred def get_variables_to_restore(self, variables, var_keep_dic): variables_to_restore = [] for v in variables: # exclude the first conv layer to swap RGB to BGR if v.name == (self._resnet_scope + '/conv1/weights:0'): self._variables_to_fix[v.name] = v continue if v.name.split(':')[0] in var_keep_dic: print('Varibles restored: %s' % v.name) variables_to_restore.append(v) return variables_to_restore def fix_variables(self, sess, pretrained_model): print('Fix Resnet V1 layers..') with tf.variable_scope('Fix_Resnet_V1') as scope: with tf.device("/cpu:0"): # fix RGB to BGR conv1_rgb = tf.get_variable("conv1_rgb", [7, 7, 3, 64], trainable=False) restorer_fc = tf.train.Saver({self._resnet_scope + "/conv1/weights": conv1_rgb}) restorer_fc.restore(sess, pretrained_model) sess.run(tf.assign(self._variables_to_fix[self._resnet_scope + '/conv1/weights:0'], tf.reverse(conv1_rgb, [2])))
- 第四个,在之前的第9步时,点击
Run 'train'
开始训练之前先修改train.py
代码的如下几个地方。
# 添加的代码(使用resnet101作为预训练模型) from lib.nets.resnet_v1 import resnetv1 # 添加结束
# 添加的代码(使用resnet101) if cfg.FLAGS.network == 'resnet101': self.net = resnetv1(batch_size=cfg.FLAGS.ims_per_batch) # 添加结束
经过上面的几步修改后,就可以运行train.py
开始训练模型了。
训练时,模型保存的路径是./default/voc_2007_trainval/default
,每次保存模型都是保存4个文件,如下图所示。
相应地,测试时也需要修改几个地方。
- 第一个,在之前的第12步时,改为新建
./output/resnet101/voc_2007_trainval/default
文件夹,从./default/voc_2007_trainval/default
路径下复制一组模型数据到新建的文件夹下,并将所有文件名改为resnet101.后缀
。
- 第二个,在之前的第13步时,对
demo.py
再进行如下的修改。
经过上面的几步修改后,就可以运行demo.py
开始测试模型了。
在输出PR曲线并计算AP值时,同样也需要修改test_net.py
文件中的几个地方,如下图所示。
经过上面的几步修改后,就可以运行test_net.py
来输出PR曲线并计算AP值了。
这篇关于使用ResNet101作为预训练模型训练Faster-RCNN-TensorFlow-Python3-master的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-10-30tensorflow是什么-icode9专业技术文章分享
- 2024-10-15成功地使用本地的 NVIDIA GPU 运行 PyTorch 或 TensorFlow
- 2024-01-23供应链投毒预警 | 恶意Py包仿冒tensorflow AI框架实施后门投毒攻击
- 2024-01-19attributeerror: module 'tensorflow' has no attribute 'placeholder'
- 2024-01-19module 'tensorflow.compat.v2' has no attribute 'internal'
- 2023-07-17【2023年】第33天 Neural Networks and Deep Learning with TensorFlow
- 2023-07-10【2023年】第32天 Boosted Trees with TensorFlow 2.0(随机森林)
- 2023-07-09【2023年】第31天 Logistic Regression with TensorFlow 2.0(用TensorFlow进行逻辑回归)
- 2023-07-01【2023年】第30天 Supervised Learning with TensorFlow 2(用TensorFlow进行监督学习 2)
- 2023-06-18【2023年】第29天 Supervised Learning with TensorFlow 1(用TensorFlow进行监督学习 1)