Python Cats vs Dogs 分类
2021/6/28 20:21:56
本文主要是介绍Python Cats vs Dogs 分类,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
https://data-flair.training/blogs/cats-dogs-classification-deep-learning-project-beginners/
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import pandas as pd import random import os import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras import models from tensorflow.keras import Sequential """define image properties""" Image_Width = 128 Image_Height = 128 Image_Size = (Image_Width,Image_Height) Image_Channel = 3 """prepare training dataset""" filenames = os.listdir('./dogs-vs-cats/train') categories = [] for f_name in filenames: category = f_name.split('.')[0] if category == 'dog': categories.append(1) else: categories.append(0) df = pd.DataFrame({ 'filename':filenames, 'category':categories }) """creat the NN model""" model = Sequential() model.add(tf.keras.layers.Conv2D(32,(3,3),activation='relu',input_shape=(Image_Width,Image_Height,Image_Channel))) model.add(tf.keras.layers.BatchNormalization()) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2,2))) model.add(tf.keras.layers.Dropout(0.25)) #dropout 25% data model.add(tf.keras.layers.Conv2D(64,(3,3),activation='relu')) model.add(tf.keras.layers.BatchNormalization()) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2,2))) model.add(tf.keras.layers.Dropout(0.25)) #dropout 25% data model.add(tf.keras.layers.Conv2D(128,(3,3),activation='relu')) model.add(tf.keras.layers.BatchNormalization()) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2,2))) model.add(tf.keras.layers.Dropout(0.25)) #dropout 25% data model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(512,activation='relu')) model.add(tf.keras.layers.BatchNormalization()) model.add(tf.keras.layers.Dropout(0.5)) #dropout 50% data model.add(tf.keras.layers.Dense(2,activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy']) model.summary() """define callbacks and learning rate""" earlystop = tf.keras.callbacks.EarlyStopping(patience=10) learning_rate_reduction = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_acc',patience=2,verbose=1,factor=0.5,min_lr=0.00001) callbacks = [earlystop,learning_rate_reduction] """manage data""" df['category']=df['category'].replace({0:'cat',1:'dog'}) train_df, validate_df = train_test_split(df, test_size=0.20, random_state=42) train_df = train_df.reset_index(drop=True) validate_df = validate_df.reset_index(drop=True) total_train = train_df.shape[0] total_validate = validate_df.shape[0] batch_size = 15 """training and validation data generator""" """data augmentation""" train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rotation_range=15, rescale=1./255, shear_range=0.1, zoom_range=0.2, horizontal_flip=True, width_shift_range=0.1, height_shift_range=0.1) train_generator = train_datagen.flow_from_dataframe(train_df,'./dogs-vs-cats/train/', x_col='filename', y_col='category', target_size=Image_Size, class_mode='categorical', batch_size=batch_size) validation_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255) validation_generator = validation_datagen.flow_from_dataframe(validate_df,'./dogs-vs-cats/train/', x_col='filename', y_col='category', target_size=Image_Size, class_mode='categorical', batch_size=batch_size) """model training""" epochs = 10 history = model.fit_generator(train_generator, epochs=epochs, validation_data=validation_generator, validation_steps=total_validate//batch_size, steps_per_epoch=total_train//batch_size, callbacks=callbacks) """save the model""" model.save('model_catsVSdogs_10epoch.h5') """test data preparation""" model = tf.keras.models.load_model('model_catsVSdogs_10epoch.h5') test_filenames = os.listdir('./dogs-vs-cats/test1') test_df = pd.DataFrame({'filename':test_filenames}) test_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rotation_range=15, rescale=1./255, shear_range=0.1, zoom_range=0.2, horizontal_flip=True, width_shift_range=0.1, height_shift_range=0.1) test_generator = test_datagen.flow_from_dataframe(test_df,'./dogs-vs-cats/test1/', x_col='filename', y_col='category', target_size=Image_Size, class_mode=None, batch_size=batch_size) nb_samples = test_df.shape[0] predict = model.predict_generator(test_generator,steps=np.ceil(nb_samples/batch_size)) test_df['category']=np.argmax(predict, axis=-1) # label_map = dict((v,k) for k,v in train_generator.class_indices.items()) label_map = (train_generator.class_indices) label_map = dict((v,k) for k,v in label_map.items()) #flip k,v test_df['category'] = test_df['category'].replace(label_map) test_df['category'] = test_df['category'].replace({'dog':1,'cat':0}) """visualize the prediction results""" sample_test = test_df.head(18) sample_test.head() plt.figure(figsize=(12,24)) for index, row in sample_test.iterrows(): filename = row['filename'] category = row['category'] img = tf.keras.preprocessing.image.load_img('./dogs-vs-cats/test1/'+filename, target_size=Image_Size) plt.subplot(6,3,index+1) plt.imshow(img) plt.xlabel(filename + '(' + '{}'.format(category) + ')') plt.tight_layout() plt.show()
主要修改了引用代码中test/predict的地方。
# label_map = dict((v,k) for k,v in train_generator.class_indices.items()) label_map = (train_generator.class_indices) label_map = dict((v,k) for k,v in label_map.items()) #flip k,v
总觉得注释行和下面两行是相同的意思,但是注释行会报错。也没找到原因。
这篇关于Python Cats vs Dogs 分类的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-24Python编程基础详解
- 2024-11-21Python编程基础教程
- 2024-11-20Python编程基础与实践
- 2024-11-20Python编程基础与高级应用
- 2024-11-19Python 基础编程教程
- 2024-11-19Python基础入门教程
- 2024-11-17在FastAPI项目中添加一个生产级别的数据库——本地环境搭建指南
- 2024-11-16`PyMuPDF4LLM`:提取PDF数据的神器
- 2024-11-16四种数据科学Web界面框架快速对比:Rio、Reflex、Streamlit和Plotly Dash
- 2024-11-14获取参数学习:Python编程入门教程