Pandas字符串和文本数据

在本章中,我们将使用基本系列/索引来讨论字符串操作。在随后的章节中,将学习如何将这些字符串函数应用于数据帧(DataFrame)。

Pandas提供了一组字符串函数,可以方便地对字符串数据进行操作。 最重要的是,这些函数忽略(或排除)丢失/NaN值。

几乎这些方法都使用Python字符串函数(请参阅: http://docs.python.org/3/library/stdtypes.html#string-methods )。 因此,将Series对象转换为String对象,然后执行该操作。

下面来看看每个操作的执行和说明。

编号 函数 描述
1 lower() Series/Index中的字符串转换为小写。
2 upper() Series/Index中的字符串转换为大写。
3 len() 计算字符串长度。
4 strip() 帮助从两侧的系列/索引中的每个字符串中删除空格(包括换行符)。
5 split(' ') 用给定的模式拆分每个字符串。
6 cat(sep=' ') 使用给定的分隔符连接系列/索引元素。
7 get_dummies() 返回具有单热编码值的数据帧(DataFrame)。
8 contains(pattern) 如果元素中包含子字符串,则返回每个元素的布尔值True,否则为False
9 replace(a,b) 将值a替换为值b
10 repeat(value) 重复每个元素指定的次数。
11 count(pattern) 返回模式中每个元素的出现总数。
12 startswith(pattern) 如果系列/索引中的元素以模式开始,则返回true
13 endswith(pattern) 如果系列/索引中的元素以模式结束,则返回true
14 find(pattern) 返回模式第一次出现的位置。
15 findall(pattern) 返回模式的所有出现的列表。
16 swapcase 变换字母大小写。
17 islower() 检查系列/索引中每个字符串中的所有字符是否小写,返回布尔值
18 isupper() 检查系列/索引中每个字符串中的所有字符是否大写,返回布尔值
19 isnumeric() 检查系列/索引中每个字符串中的所有字符是否为数字,返回布尔值。

现在创建一个系列,看看上述所有函数是如何工作的。

import pandas as pd
import numpy as np

s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t', np.nan, '1234','SteveMinsu'])

print (s)

执行上面示例代码,得到以下结果 -

0             Tom
   William Rick
           John
        Alber@t
            NaN

     SteveMinsu
dtype: object

1. lower()函数示例

import pandas as pd
import numpy as np

s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t', np.nan, '1234','SteveMinsu'])

print (s.str.lower())

执行上面示例代码,得到以下结果 -

0             tom
   william rick
           john
        alber@t
            NaN

     steveminsu
dtype: object

2. upper()函数示例

import pandas as pd
import numpy as np

s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t', np.nan, '1234','SteveMinsu'])

print (s.str.upper())

执行上面示例代码,得到以下结果 -

0             TOM
   WILLIAM RICK
           JOHN
        ALBER@T
            NaN

     STEVESMITH
dtype: object

3. len()函数示例

import pandas as pd
import numpy as np

s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t', np.nan, '1234','SteveMinsu'])
print (s.str.len())

执行上面示例代码,得到以下结果 -

0     3.0
   12.0
    4.0
    7.0
    NaN
    4.0
   10.0
dtype: float64

4. strip()函数示例

import pandas as pd
import numpy as np
s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])
print (s)
print ("=========== After Stripping ================")
print (s.str.strip())

执行上面示例代码,得到以下结果 -

0             Tom 
    William Rick
            John
         Alber@t
dtype: object
=========== After Stripping ================
            Tom
   William Rick
           John
        Alber@t
dtype: object

5. split(pattern)函数示例

import pandas as pd
import numpy as np
s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])
print (s)
print ("================= Split Pattern: ==================")
print (s.str.split(' '))

执行上面示例代码,得到以下结果 -

0             Tom 
    William Rick
            John
         Alber@t
dtype: object
================= Split Pattern: ==================
             [Tom, ]
   [, William, Rick]
              [John]
           [Alber@t]
dtype: object

6. cat(sep=pattern)函数示例

import pandas as pd
import numpy as np

s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])

print (s.str.cat(sep=' <=> '))

执行上面示例代码,得到以下结果 -

Tom  <=>  William Rick <=> John <=> Alber@t

7. get_dummies()函数示例

import pandas as pd
import numpy as np

s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])

print (s.str.get_dummies())

执行上面示例代码,得到以下结果 -

    William Rick  Alber@t  John  Tom 
       0     0     1
       0     0     0
       0     1     0
       1     0     0

8. contains()函数示例

import pandas as pd
s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])
print (s.str.contains(' '))

执行上面示例代码,得到以下结果 -

0     True
    True
   False
   False
dtype: bool

9. replace(a,b)函数示例

import pandas as pd
s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])
print (s)
print ("After replacing @ with $: ============== ")
print (s.str.replace('@','$'))

执行上面示例代码,得到以下结果 -

0             Tom 
    William Rick
            John
         Alber@t
dtype: object
After replacing @ with $: ============== 
            Tom 
    William Rick
            John
         Alber$t
dtype: object

10. repeat(value)函数示例

import pandas as pd

s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])

print (s.str.repeat(2))

执行上面示例代码,得到以下结果 -

0                      Tom Tom 
    William Rick William Rick
                     JohnJohn
               Alber@tAlber@t
dtype: object

11. count(pattern)函数示例

import pandas as pd

s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])

print ("The number of 'm's in each string:")
print (s.str.count('m'))

执行上面示例代码,得到以下结果 -

The number of 'm's in each string:

   1

   0
dtype: int64

12. startswith(pattern)函数示例

import pandas as pd

s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])

print ("Strings that start with 'T':")
print (s.str. startswith ('T'))

执行上面示例代码,得到以下结果 -

Strings that start with 'T':
    True
   False
   False
   False
dtype: bool

13. endswith(pattern)函数示例

import pandas as pd
s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])
print ("Strings that end with 't':")
print (s.str.endswith('t'))

执行上面示例代码,得到以下结果 -

Strings that end with 't':
   False
   False
   False
    True
dtype: bool

14. find(pattern)函数示例

import pandas as pd
s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])
print (s.str.find('e'))

执行上面示例代码,得到以下结果 -

0   -1
  -1
  -1

dtype: int64

注意:-1表示元素中没有这样的模式可用。

15. findall(pattern)函数示例

import pandas as pd

s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])
print (s.str.findall('e'))

执行上面示例代码,得到以下结果 -

0     []
    []
    []
   [e]
dtype: object

空列表([])表示元素中没有这样的模式可用。

16. swapcase()函数示例

import pandas as pd

s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t'])
print (s.str.swapcase())

执行上面示例代码,得到以下结果 -

0             tOM
   wILLIAM rICK
           jOHN
        aLBER@T
dtype: object

17. islower()函数示例

import pandas as pd

s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t'])
print (s.str.islower())

执行上面示例代码,得到以下结果 -

0    False
   False
   False
   False
dtype: bool

18. isupper()函数示例

import pandas as pd

s = pd.Series(['TOM', 'William Rick', 'John', 'Alber@t'])

print (s.str.isupper())

执行上面示例代码,得到以下结果 -

0    True
   False
   False
   False
dtype: bool

19. isnumeric()函数示例

import pandas as pd
s = pd.Series(['Tom', '1199','William Rick', 'John', 'Alber@t'])
print (s.str.isnumeric())

执行上面示例代码,得到以下结果 -

0    False
    True
   False
   False
   False
dtype: bool

上一篇:Pandas排序

下一篇:Pandas选项和自定义

关注微信小程序
程序员编程王-随时随地学编程

扫描二维码
程序员编程王

扫一扫关注最新编程教程