- Pandas环境安装配置
- Pandas数据结构
- Pandas快速入门
- Pandas系列
- Pandas数据帧(DataFrame)
- Pandas面板(Panel)
- Pandas基本功能
- Pandas描述性统计
- Pandas函数应用
- Pandas重建索引
- Pandas迭代
- Pandas排序
- Pandas字符串和文本数据
- Pandas选项和自定义
- Pandas索引和选择数据
- Pandas统计函数
- Pandas窗口函数
- Pandas聚合
- Pandas缺失数据
- Pandas分组(GroupBy)
- Pandas合并/连接
- Pandas级联
- Pandas日期功能
- Pandas时间差(Timedelta)
- Pandas分类数据
- Pandas可视化
- Pandas IO工具
- Pandas稀疏数据
- Pandas注意事项&窍门
- Pandas与SQL比较
Pandas缺失数据
数据丢失(缺失)在现实生活中总是一个问题。 机器学习和数据挖掘等领域由于数据缺失导致的数据质量差,在模型预测的准确性上面临着严重的问题。 在这些领域,缺失值处理是使模型更加准确和有效的重点。
何时以及为什么数据丢失?
想象一下有一个产品的在线调查。很多时候,人们不会分享与他们有关的所有信息。 很少有人分享他们的经验,但不是他们使用产品多久; 很少有人分享使用产品的时间,经验,但不是他们的个人联系信息。 因此,以某种方式或其他方式,总会有一部分数据总是会丢失,这是非常常见的现象。
现在来看看如何处理使用Pandas的缺失值(如NA
或NaN
)。
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print (df)
执行上面示例代码,得到以下结果 -
one two three a 0.691764 -0.118095 -0.950871 b NaN NaN NaN c -0.886898 0.053705 -1.269253 d NaN NaN NaN e -0.344967 -0.837128 0.730831 f -1.193740 1.767796 0.888104 g NaN NaN NaN h -0.755934 -1.331638 0.272248
使用重构索引(reindexing),创建了一个缺少值的DataFrame。 在输出中,NaN
表示不是数字的值。
检查缺失值
为了更容易地检测缺失值(以及跨越不同的数组dtype
),Pandas提供了isnull()
和notnull()
函数,它们也是Series和DataFrame对象的方法 -
示例1
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print (df['one'].isnull())
执行上面示例代码,得到以下结果 -
a False b True c False d True e False f False g True h False Name: one, dtype: bool
示例2
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print (df['one'].notnull())
执行上面示例代码,得到以下结果 -
a True b False c True d False e True f True g False h True Name: one, dtype: bool
缺少数据的计算
- 在求和数据时,
NA
将被视为0
- 如果数据全部是
NA
,那么结果将是NA
实例1
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print (df['one'].sum())
执行上面示例代码,得到以下结果 -
-2.6163354325445014
示例2
import pandas as pd import numpy as np df = pd.DataFrame(index=[0,1,2,3,4,5],columns=['one','two']) print (df['one'].sum())
执行上面示例代码,得到以下结果 -
nan
清理/填充缺少数据
Pandas提供了各种方法来清除缺失的值。fillna()
函数可以通过几种方法用非空数据“填充”NA
值,在下面的章节中将学习和使用。
用标量值替换NaN
以下程序显示如何用0
替换NaN
。
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(3, 3), index=['a', 'c', 'e'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c']) print (df) print ("NaN replaced with '0':") print (df.fillna(0))
执行上面示例代码,得到以下结果 -
one two three a -0.479425 -1.711840 -1.453384 b NaN NaN NaN c -0.733606 -0.813315 0.476788 NaN replaced with '0': one two three a -0.479425 -1.711840 -1.453384 b 0.000000 0.000000 0.000000 c -0.733606 -0.813315 0.476788
在这里填充零值; 当然,也可以填写任何其他的值。
填写NA前进和后退
使用重构索引章节讨论的填充概念,来填补缺失的值。
方法 | 动作 |
---|---|
pad/fill |
填充方法向前 |
bfill/backfill |
填充方法向后 |
示例1
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print (df.fillna(method='pad'))
执行上面示例代码,得到以下结果 -
one two three a 0.614938 -0.452498 -2.113057 b 0.614938 -0.452498 -2.113057 c -0.118390 1.333962 -0.037907 d -0.118390 1.333962 -0.037907 e 0.699733 0.502142 -0.243700 f 0.544225 -0.923116 -1.123218 g 0.544225 -0.923116 -1.123218 h -0.669783 1.187865 1.112835
示例2
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print (df.fillna(method='backfill'))
执行上面示例代码,得到以下结果 -
one two three a 2.278454 1.550483 -2.103731 b -0.779530 0.408493 1.247796 c -0.779530 0.408493 1.247796 d 0.262713 -1.073215 0.129808 e 0.262713 -1.073215 0.129808 f -0.600729 1.310515 -0.877586 g 0.395212 0.219146 -0.175024 h 0.395212 0.219146 -0.175024
丢失缺少的值
如果只想排除缺少的值,则使用dropna
函数和axis
参数。 默认情况下,axis = 0
,即在行上应用,这意味着如果行内的任何值是NA
,那么整个行被排除。
实例1
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print (df.dropna())
执行上面示例代码,得到以下结果 -
one two three a -0.719623 0.028103 -1.093178 c 0.040312 1.729596 0.451805 e -1.029418 1.920933 1.289485 f 1.217967 1.368064 0.527406 h 0.667855 0.147989 -1.035978
示例2
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print (df.dropna(axis=1))
执行上面示例代码,得到以下结果 -
Empty DataFrame Columns: [] Index: [a, b, c, d, e, f, g, h]
替换丢失(或)通用值
很多时候,必须用一些具体的值取代一个通用的值。可以通过应用替换方法来实现这一点。
用标量值替换NA
是fillna()
函数的等效行为。
示例1
import pandas as pd import numpy as np df = pd.DataFrame({'one':[10,20,30,40,50,2000], 'two':[1000,0,30,40,50,60]}) print (df.replace({1000:10,2000:60}))
执行上面示例,得到以下结果 -
one two 10 0 30 40 50 60
示例2
import pandas as pd import numpy as np df = pd.DataFrame({'one':[10,20,30,40,50,2000], 'two':[1000,0,30,40,50,60]}) print (df.replace({1000:10,2000:60}))
执行上面示例代码,得到以下结果 -
one two 10 0 30 40 50 60
上一篇:Pandas聚合
扫描二维码
程序员编程王